Cumulative Subject Index for Volumes 128–134¹ Α Absorption spectroscopy magnesium phthalocyanine thin films prepared by vacuum evaporation, 128, 27 β -rhombohedral boron, **133**, 129 Aciculate ultrafine particles α -Fe₂O₃, kinetics of reduction to Fe₃O₄ particles, **134**, 248 acidity Mg-Fe catalyst surface prepared from hydrotalcite-like precursors, microcalorimetric study, 128, 73 Acoustic emission during metal-insulator phase transition in V₂O₃, 133, 430 Adsorption by LaNi₅ particles, 134, 67 Aerosols pyrolysis, in synthesis of iron zircon pigments, 128, 102 Alkaline earth elements $Ln_{0.5}A_{0.5}$ MnO₃ (Ln = rare earth; A = alkaline earth), charge ordering in, dependence on size of A-site cation, letter to editor, **129**, 363 n-Alkylamines intercalation into hydrated hydrogen insertion compound derived from blue potassium molybdenum bronze, **128**, 256 Alloys fcc-based, ordering in, similarity to cation ordering in [(Tl,M)O] layers of 1201-based cuprate, 132, 113 Alluaudite garnet-alluaudite polymorphism in $NaCa_2M_2^{2+}(AsO_4)_3$ ($M^{2+} = Mg$, Ni,Co), cationic substitution effects, 131, 290 related structure NaCaCdMg₂(AsO₄)₃, 131, 298 Na₃In₂(AsO₄)₃ with, **134**, 31 synthetic modifications, 131, 131 Aluminum Al₁₂ and A₁₃, bonding in, 133, 302, 310 AIN, microwave synthesis, 130, 266 AlLnO₃ (Ln = La,Ce,Pr,Nd,Sm,Ho), cation arrays in perovskite-type compounds, **128**, 69 Al_2O_3 , xerogel doped with La and Ce, X-ray diffraction, FTIR, and NMR studies, 128, 161 M- β'' -Al₂O₃ ($M = Na^+, K^+, Ca^{2+}, Sr^{2+}, Ag^+, Zn^{2+}$) ionic conductors, electrochemical doping with, **128**, 93 $Al_5Ln_3O_{12}$ (Ln = Gd-Lu), cations arrays in garnet-type compounds, **128**, 69 AlOOH, cation arrays, 131, 358 Al-Pd-Re quasicrystals modulated photocurrent measurements, 133, 224 photocurrent observations, 133, 302 $Al_{92-x}Pd_xRe_8$ -type quasicrystals, electronic properties, 133, 160 $[Al_3P_4O_{16}]^{3-} \cdot 3[CH_3CH_2NH_3]^+$, nonaqueous synthesis and characterization, **129**, 37 AlSr₂YCu₂O₇, structural order/disorder in, 133, 434 aluminum titanate, high-temperature phase formation in sol-gel synthesis, FTIR study, 131, 181 BaO-Al₂O₃-AlN system, phase relations, 129, 66 BaTiO₃-LaAlO₃ and BaTiO₃-LaAlO₃-LaTi_{3/4}O₃ systems, chemical reactions and dielectric properties, **129**, 223 B-C-Al compounds with boron carbide structure, IR active phonon spectra, 133, 254 Ca₈[Al₁₂O₂₄](MoO₄)₂, structure and high-temperature phase transitions, 129, 130 Ca₃(Cr,Al)₂Si₃O₁₂ garnets, electron density study, 132, 432 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)]$, synthesis and characterization, 128, CuAl₂, structural relationship to SiF₄, 132, 151; erratum, 134, 431 ErAlB₁₄, icosahedral solids, electronic properties, **133**, 160 flux, LaB₆ preparation from, thermodynamic analysis, 237 icosahedral cluster solids in Al-based compounds, 133, 302 $KAl(HPO_4)_2 \cdot H_2O, X$ -ray diffraction, neutron scattering, and solid-state NMR, 132, 47 LaCaAlO₄, K₂NiF₄-type aluminate single crystals, decomposition processes in, X-ray diffraction study, 134, 132 lanthanum magnesium hexaaluminate, defect energetics and nonstoichiometry, 130, 199 Li₃AlN₂, microwave synthesis, 130, 266 (Mo_xCr_{1-x})AlB and (Mo_xW_{1-x})AlB, single crystal growth by metal Al solutions and crystal properties, **133**, 36 Na₃Al(OH)(HPO₄)(PO₄), synthesis and chain structure, 128, 21 NaAlO₂-NaAlSiO₄ system, cristobalite-related phases in, XRD and electron diffraction study, 131, 24 $Y_3X_2Al_3O_{12}$ garnets (X = Al and (Al,Cr)), electron density study, 134, 182 Americium Am³⁺, in LiYF₄, spectroscopic studies and crystal-field analysis, **129**, Am_2T_2X (T = Co,Ir,Ni,Pd,Pt,Rh; X = In,Sn), synthesis, crystal chemistry, and physical properties, **134**, 138 Aminoboranes as BN source for coatings, matrix, and Si_3N_4 -BN composite ceramics, 133, 164 2-Amino-2-methyl-1,3-propanediol and 1,1,1-tris(hydroxymethyl)propane, orientationally disordered phases, crystallography and thermodynamics, 133, 536 2-Amino-5-nitropyridinium chloride crystal growth, 129, 22 Ammonium (ND₄)₂PdCl₆, antifluorite, phase analysis, 131, 221 $NH_4Br \cdot Me^{2+}Br_2 \cdot 6H_2O$ ($Me^{2+} = Co, Ni$), crystallization and structure, **129**, 200 β-(NH₄)₂FeF₅, hydrogen bonding-induced NH₄⁺ ordering at low temperature, structural and spectroscopic evidence, **131**, 189 $[NH_4]^+[(Sn_3O)_2(PO_4)_3]^-$, synthesis and structure, 134, 207 $(NH_4)_2[(Ti_3O_2)(HPO_4)_2(PO_4)_2]$, synthesis and X-ray powder structure, 132, 213 Ammonium vanadate phosphates NH₄VOPO₄, crystal structure, and analysis of hydrothermal vanadium phosphate systems at 473 K, 134, 286 ¹ Boldface numbers indicate volume; lightface numbers indicate pagination. (NH₄)₃V₂O₃(VO)(PO₄)₂(HPO₄), crystal structure, and analysis of hydrothermal vanadium phosphate systems at 473 K, 134, 286 Cr₂S₃, TiS₂, and VS₂: synthesis of CrN, TiN, and VN, **134**, 120 Anatase formation by transformation of ultrafine rutile particles at negatively charged colloid surfaces, letter to editor, 132, 447 TiO₂ nanopowders, Ru complex sensitizers of, crystal structure, 132, 60 Annealing effects on quaternary borocarbides, 133, 169 TiB2-CrB2-WB2 supersaturated solid solutions, phase formation during, 133, 25 Announcements Notice to individuals engaged in research in the solid state chemistry and materials area, 129, 369 Second International Conference on Mechanochemistry and Mechanical Activation, Academgorodok, Novosibirsk, Russia, August 1997, **128,** 330 Antiferrodistortive order in CrZr_{0.75}Nb_{0.25}F₆ solid solution, 131, 231 Antiferromagnetic coupling in $[Cu(II)(\mu-3,5-dimethylpyrazolate)(\mu-OH)]$ and $[Cu(II)(\mu-pyrazolate)]$ $(\mu\text{-OH})$], **132**, 24 Antiferromagnetic ordering Bi₂Sr₂CuO₆, 133, 372 RNi_2B_2C ($R = Tm_1Er$), T_N , effects of Pd, Pt, and Co dopants, 133, 5 $Sr_2Cu_2MO_2S_2$ (M = Mn,Zn), 130, 319 Antifluorites (ND₄)₂PdCl₆, phase analysis, 131, 221 Antimony $Ba_2(RSb)O_6$ (R = Y,Ho), ordered perovskites suitable as substrates for superconducting films, characterization, 128, 247 BaTl_{0.5}Sb_{0.5}O₃, ordered perovskite, structural analysis, letter to editor, **128.** 323 Cs₃Sb₂I₉, reconstructive phase transformation and kinetics by means of Rietveld analysis of X-ray diffraction and ¹²⁷I NQR, **134**, 319 CuSb₂O₆, dimorphism, solid state and EPR study, 131, 263 GaSb, zinc blende crystals, linear electro-optic coefficient, 130, 54 InSb, zinc blende crystals, linear electro-optic coefficient, 130, 54 Li₃Cu₂SbO₆ with partially ordered rock salt structure, synthesis, 131, 115 $Mn_7Sb_4(\mu_5-O)_2(\mu_4-O)_2(\mu_3-OEt)_2(\mu-OEt)_{16}(HOEt)_2$, synthesis structural analysis, 134, 312 Na₂Ti₂Sb₂O layered tetragonal compound, phase transition and spin gap behavior in, 134, 423 SbCrSe₃ 1D ferromagnet, structure determination by HREM image analysis, 132, 257 Sb₂S₃-As₂S₃-Tl₂S glasses, ¹²¹Sb Mössbauer spectroscopy, **133**, 458 $Sb_2Te_{3-x}Se_x$ crystals, point defects in, 129, 92 $Sb_{0.16}WO_3$ intergrowth tungsten bronze, X-ray diffraction and electron diffraction study, 134, 344 Sb-(W,V)-O system, Aurivillius-related phases in, structure and properties, **128**, 30 Zn(Mg)_{1-x}Cu_xSb₂O₆, trirutile-type compounds, Cu²⁺ polyhedra in, geometry and electronic structure, 131, 263 ZrSi_{0.7}Sb_{1.3}, ZrSn_{0.4}Sb_{1.6}, and ZrGeSb: family containing ZrSiS-type and β -ZrSb₂-type compounds, **134**, 388 Arcaine sulfate FT-IR, Raman, and SERS spectra, 133, 423 Cd₈As₇Cl: novel pnictidohalide with new structure type, **134**, 282 GaAs, zinc blende crystals, linear electro-optic coefficient, 130, 54 InAs, zinc blende crystals, linear electro-optic coefficient, 130, 54 K₅In₅Ge₅As₁₄ and K₈In₈Ge₅As₁₇, layered materials, synthesis and crystal structure, 130, 234 $LiMnAsO_4(OD)$ (X = P,As), magnetic structure, 132, 202 (Mg,Ni)₂(OH)(AsO₄), structural and spectroscopic studies, 132, 107 $NaCa_2M_2^{2+}(AsO_4)_3$ ($M^{2+}=Mg,Ni,Co$), cationic substitution effects on garnet-alluaudite polymorphism, 131, 290 NaCaCdMg₂(AsO₄)₃, alluaudite-like structure, **131**, 298 Na₃In₂(AsO₄)₃ alluaudite-like structure, 134, 31 hydrothermal synthesis and structure, 131, 131 NaMoO₂AsO₄, preparation and crystal structure, 133, 386 NiAs-Ni₂In, related structures in Mn-Sn system, 129, 231 Rb₂Cr₂O(AsO₄)₂, preparation and crystal structure, 134, 22 Sb₂S₃-As₂S₃-Tl₂S glasses, ¹²¹Sb Mössbauer spectroscopy, **133**, 458 W₅As_{2.5}P_{1.5} with one-dimensional vertex-linked W₆ cluster, **131**, 310 A-site cations size, effect on charge ordering in rare earth manganates, letter to editor, 129, 363 Atomic size in zinc blende crystals, linear electro-optic coefficient dependence on, 130, 54 Aurivillius-related phases in Sb-(W,V)-O system, structure and properties, 128, 30 Ball milling high-energy, in direct synthesis of lanthanum molybdates with La:Mo ratio of 1:1, letter to editor, 132, 443 BaB₆, electronic structure calculations, **133**, 51 BaCoO_{2.94} hexagonal related perovskites, ordering of anionic vacancies in, 128, 130 Ba(CoPO₄)₂·H₂O, lamellar hydrated phosphate with two-dimensional array of Co-O-Co network, 131, 387 BaCuB2O5, noncentrosymmetric pyroborate, synthesis, structure, and properties. 129, 184 Ba₂Cu₃Cl₂O₄, synthesis and properties, 124, 319; comment, 130, 161 Ba-Cu-C-O system, structural equivalence of CO₃ and CuO_x groups, Ba₆Cu₁₂Fe₁₃S₂₇, synthesis and crystal structure, **128**, 62 $RBa_2Cu_4O_8$ (R = Gd,Ho), superconductors, Sr substitution in, 128, 310 $Ba_4CuMO_4Cl_4$ (M = Li,Na), Cu(III) oxy-chlorides, synthesis, structure, and electrical and magnetic properties, letter to editor, 129, 360 Ba₂Cu_xZn_{1-x}WO₆ mixed crystals, cooperative Jahn-Teller effect in Raman spectra, 129, 117 $Ba_2MM'F_7Cl(M,M' = Mn,Fe,Co,Ni,Zn)$, magnetic properties and neutron diffraction study, 131, 198 BaFe₂O₄ and BaFe₁₂O₁₉ particles, synthesis with combustion method, 134, 227 BaGe₂, synthesis, structure, and properties, 133, 501 Ba₂In₂O₅, Brownmillerite-structured, computer simulation study, 128, Ba₆Mn₂₄O₄₈ with composite tunnel structure, synthesis and HREM study, 132, 239 BaMo₂O₇(s), molar Gibbs energy of formation using solid oxide galvanic cell method, 134, 416 BaNbSe₃, quasi-one-dimensional selenide, phase transitions, 132, 188 BaNb₂Se₅, superconductivity, **132**, 188 $Ba_{88}Ni_{87}O_{156}(CO_3)_{19}$, synthesis and structure, 128, 220 $Ba_5M_4O_{15}$ ($M = Ta^{5+}, Nb^{5+}$), luminescence, **134**, 187 BaO-Al₂O₃-AlN system, phase relations, **129**, 66 Ba₁₁Pd₁₁O₂₀(CO₃)₂, synthesis and structure, **128**, 220 BaRuO₃, prepared at ambient pressure and possessing four-layer hexagonal structure, crystal structure refinement, 128, 251 Ba₅Ru_{1.6}W_{0.4}Cl₂O₉, 10-layer perovskite-related oxyhalide, crystal structure, 132, 407 Ba₂(RSb)O₆ (R = Y,Ho), ordered perovskites suitable as substrates for superconducting films, characterization, **128**, 247 Ba₂SnO₄, Pr⁴⁺ doped in, EPR spectra, 130, 250 $Ba_{2-x}Sr_xDyTaO_6$ (x = 0,1,2), development and dielectric properties, 133, 522 Ba_{5-x}Sr_xNb₄O₁₅, microwave dielectric ceramic resonators, vibrational analysis, **131**, 2 $(Ba,Sr)_{1+y}UO_{3+x}$, perovskite-related phases, structure and thermodynamics, 131, 341 BaTiO₃, thin film preparation using glycolate precursor, 131, 43 BaTiO₃-LaAlO₃ and BaTiO₃-LaAlO₃-LaTi_{3/4}O₃ systems, chemical reactions and dielectric properties, **129**, 223 BaTl_{0.5}Sb_{0.5}O₃, ordered perovskite, structural analysis, letter to editor, **128**, 323 $Ba_{1+y}UO_{3+x}$, perovskite-related phases, structure and thermodynamics, 131, 341 Ba₃(VO₄)₂, high-pressure behavior, 132, 156 LnCuBaO₅ (Ln = Yb,Tm,Er,Ho,Dy,Gd), Gibbs free energy of formation, determination by EMF method, 134, 85 ${\rm Hg_2Ba_2}Ln{\rm Cu_2O_8}_{-\delta}$ ($Ln={\rm Nd-Gd,Dy-Lu}$), synthesis and structural and magnetic characterization, 132, 163 In₂Ba₂CuO_{6- δ} layered cuprate, synthesis and characterization, **131**, 177 $(R_{1-x}, Pr_x)Ba_4Cu_7O_{14+\delta}$ (R=Nd, Eu, Tm), high-pressure synthesis and characterization, **132**, 73 $Sr_{3-x}Ba_xFe_2O_7$ ($x \le 0.4$), electronic state, magnetism, and electrical transport behavior, **130**, 129 $Sr_{1-x}Ba_xZrSe_3$ series, structural evolutions in, 130, 20 TeO₂-BaO-TiO₂ glasses, structural and nonlinear optical characterizations, **132**, 411 Tl₅Ba₃Sr₅Cu₃O₁₉, 1201 shear like phase, **128**, 150 $(Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}$ (0 $\leq x \leq$ 2) with Tl-2212-type structure, preparation and characterization, **132**, 308 YBa2Cu3Ov electrochemical doping with *M-β*"-Al₂O₃ ionic conductors, **128**, 93 single crystal, structure and electron density, effects of oxygen introduction, **130**, 42 YBa₂Cu₃O_{6+x}, orthorhombic, dependence of lattice parameters on oxygen content, **134**, 356 $YBa_2Cu_3O_{7-\delta}$, substrates $Ba_{2-x}Sr_xDyTaO_6$ (x=0,1,2) for, development and dielectric properties, **133**, 522 (YBa₂Cu₃O_{7-0.25})₄, superconductive mechanism, **129**, 174 Mg-Fe catalyst surface prepared from hydrotalcite-like precursors, microcalorimetric study, **128**, 73 Batteries lead acid, production, (3PbO \cdot PbSO $_4 \cdot$ H $_2$ O) formed in, crystal structure, 132, 173 Beryllium Be-B-bearing materials, parallel electron energy-loss spectroscopy, **133**, 347 UBe₁₃, heavy fermion superconductors, chemical bonding topology, 131, 394 Bismuth BiLa₂O_{4.5+ δ}, structural transformations, **131**, 64 $\mathrm{Bi_{13}Mo_4VO_{34}}E_{13}$, $[\mathrm{Bi_{12}O_{14}}E_{12}]_n$ columns and lone pairs E in, 131, 236 $\mathrm{Bi_{1-x}}Ln_x\mathrm{O_{1.5}}$ ($Ln=\mathrm{Sm-Dy}$), ion-ordered phases, stability, thermal behavior, and crystal structure, 129, 98 δ -Bi₂O₃ fluorite-type structure, Bi–Ln-V–O anionic conductors with (Ln = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), **134**, 219 Bi_2O_3 — MoO_3 – V_2O_5 system, synthesis, crystal structure, and chemistry, 131, 236 $Bi_{2-x}Pb_xSr_{1.5}Ca_{1.5}Mn_2O_{9-\delta}$ with 2212 structure, synthesis and crystal chemistry, **132**, 420 Bi_{0.267}Pr_{0.733}SrO_{3-δ}, crystal structure and magnetic properties, neutron diffraction studies, **132**, 182 Bi₂Ru₂O_{7-y} pyrochlores, metallic and nonmetallic properties, structural and electronic factors in, letter to editor, **131**, 405 Bi₂Sn₂O₇, Y-doped, bonding and structural variations in, 131, 317 Bi₂Sr₂CuO₆, antiferromagnetic order, 133, 372 $\rm Bi_{12}Sr_{18}Fe_{10}O_{52},\ HREM$ study: collapsed structure related to 2212 structure, 129, 214 $Bi_{1-x}Sr_xMnO_3$, magnetic and electrical properties, 132, 139 Bi–Ln–V–O anionic conductors with δ-Bi₂O₃ fluorite-type structure (Ln = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), **134**, 219 CaBiO₂Cl, disordered variant of Sillen X1 structure, **128**, 115 Hf₈Bi₉, **134**, 26 Pb₂BiO₂PO₄, crystal structure, **133**, 516 $Sr_{10-n/2}Bi_nFe_{20}O_m$ (n = 4,6,8,10), with high oxygen permeability, synthesis. **130.** 316 SrBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115 Ti_4TBi_2 (T = Cr,Mn,Fe,Co,Ni), preparation and properties, 133, 400 Ti_8Bi_9 , preparation and crystal structure, 134, 26 Bond-charge calculation electro-optic coefficients of diatomic crystals, 128, 17 Bonding in CaFe₂P₂ and CaNi₂P₂, first-principles study, 129, 147 heavy fermion superconductors, chemical bonding topology, 131, 394 icosahedral boron solids, 133, 215 icosahedral clusters of group III elements, 133, 310 icosahedral cluster solids in Al- and B-based compounds, 133, 302 metal-to-metal, in transition metal monocarbides and mononitrides, 128, 121 small boron carbon chains stabilized in rare earth metallic frameworks, 133, 190 in $Ln_2Sn_2O_7$ (Ln = Y,La,Pr,Nd,Sm-Lu) pyrochlores, **130**, 58 in Y-doped Bi₂Sn₂O₇, **131**, 317 Boron AgI-Ag₂O-B₂O₃-SiO₂ system, reversible color changes in ion-conducting glasses prepared by microwave melting: structural implications, 131, 173 amorphous fundamental structure, 133, 211 modulated photocurrent measurements, 133, 224 p-type materials, thermoelectric properties, **133**, 314 transient photocurrent studies, 133, 201 atoms in amorphous metallic matrix, impedance spectroscopy and XPS studies, 133, 273 B_n (n = 12,16,22,32,42,46), clusters with convex and spherical structures, 133, 182 B_9X_9 (X = Cl,Br,I), syntheses, crystal structures, and electronic structure, 133, 59 $B_{1\,2}$ bonding in, 133, 302, 310 cluster in β -rhombohedral boron, ground and excited states of icosahedral $B_{12}H_{12}$ cluster simulating, 133, 178 icosahedron, simulation of amorphous boron with, 133, 178 B₁₃, bonding in, 133, 302, 310 BaB₆, electronic structure calculations, 133, 51 BaCuB₂O₅, noncentrosymmetric pyroborate, synthesis, structure, and properties, **129**, 184 B₄C electronic structure calculations, 133, 51 lattice vibrations, 133, 44 B_{4.23}C, interband critical transition points, 133, 132 B_{4.3}C and ¹⁰B_{4.3}C, interband critical transition points, 133, 132 B_{4.51}C, interband critical transition points, 133, 132 B_{6.28}C, interband critical transition points, 133, 132 B_{6.3}C, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335 B_{7.91}C, dielectric function, description based on superposition of Drude type and hopping type transport, **133**, 335 B_{8.52}C, interband critical transition points, 133, 132 B₉C, lattice vibrations, 133, 44 $B_{10.37}C$ interaction of optically excited carriers with intraicosahedral phonons, **133**, 125 interband critical transition points, 133, 132 $B_{13}C_2$, lattice vibrations, 133, 44, 93 B-C-Al compounds with boron carbide structure, IR active phonon spectra, 133, 254 B₄C-C, injection molded ceramics, mechanical properties, 133, 68 B-C-N-O system, syntheses at high pressure and temperature in electron energy-loss spectroscopy, **133**, 365 materials prepared by, **133**, 356 Be-B-bearing materials, parallel electron energy-loss spectroscopy, **133**, 347 $B_{12}H_{12}$, icosahedral cluster simulating B_{12} cluster in β -rhombohedral boron, ground and excited states, 133, 178 BN for coatings, matrix, and Si₃N₄-BN composite ceramics, aminoboranes as source for, **133**, 164 cubic, structure and properties, effect of chemically active media, 133, 292 B_6N_{1-x} , synthesis at high pressure and temperature, 133, 356 B₆N, synthesized at high pressure and temperature, electron energy-loss spectroscopy, **133**, 365 B_6O_{1-x} , high-strength compounds, structure and bulk modulus, 133, 88 B_6O , FTIR and FT Raman spectra, 133, 260 B₆O-B₄C solid solutions, synthesis at high pressure and temperature electron energy-loss spectroscopy, **133**, 365 preparation and characterization, 133, 356 borosilicate glasses containing fluoride, OH absorption bands due to pyrohydrolysis in, removal, **130**, 330 BP CVD wafers, thermoelectric properties, 133, 314 films obtained by gas source molecular beam deposition, preparation and electrical properties, **133**, 269 $B_{12}P_2$ epitaxial growth of rhombohedral single crystalline films by chemical vapor deposition, **133**, 104 Si-doped, interband transitions and phonon spectra, 133, 140 $B_{12}S_{2-x}$, high-strength compounds, structure and bulk modulus, 133, 88 CaB₆, electronic structure calculations, 133, 51 $Ca(PO_3)_2$ - CaB_4O_7 - $Na_2B_4O_7$ - Nb_2O_5 , borophosphate glasses, synthesis and second-harmonic generation after poling treatment, **133**, 529 carbon fiber/BN matrix microcomposite, preparation, aminoboranes as BN source for, 133, 164 CeB₆ electronic structure calculations, 133, 51 polar and reticular microhardness anisotropy, 133, 296 in thin film technology, 133, 279 $Ce_5B_2C_6$, $Ce_5B_4C_5$, and $Ce_{10}B_9C_{12}$, bonding analysis, 133, 190 CeOs₃B₂, heavy fermion superconductors, chemical bonding topology, 131, 394 CeRu₃B₂, heavy fermion superconductors, chemical bonding topology, CoB₄₉, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335 crystals rich in, rotation-induced relaxation mechanism for strains, 133, 322 doped LiCoO₂, structure and electrochemical properties, 134, 265 DyB₄, polar and reticular microhardness anisotropy, 133, 296 DyB₆, incongruently melting, single crystal growth and properties, 133, 198 ErAlB₁₄, icosahedral solids, electronic properties, **133**, 160 EuB₆, polar and reticular microhardness anisotropy, 133, 296 $\text{EuB}_{6-X}\text{C}_X$ ($X \approx 0.1$), FT Raman spectroscopy, 133, 264 FeB₂₉, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335 films obtained by gas source molecular beam deposition, preparation and electrical properties, **133**, 269 GdB₄, polar and reticular microhardness anisotropy, 133, 296 HoB₄, polar and reticular microhardness anisotropy, 133, 296 HoB₆, incongruently melting, single crystal growth and properties, 133, 198 icosahedral cluster solids in B-based compounds, 133, 302 icosahedral solids rich in, lattice dynamics, central and noncentral forces on, 133, 215 KB₆, electronic structure calculations, **133**, 51 crystal preparation from Al flux using compound precursors, thermodynamic analysis, **133**, 237 electronic structure calculations, 133, 51 FT Raman spectroscopy, 133, 264 in thin film technology, 133, 279 $La_{15}B_{14}C_{19}$, bonding analysis, **133**, 190 Li₂Pd₃B and Li₂Pt₃B, with boron in octahedral position, 133, 21 LuB₄, polar and reticular microhardness anisotropy, 133, 296 LuNi₂B₂C superconductor, comparison with nonsuperconducting SrRh₂P₂, 130, 254 (Mo_xCr_{1-x})AlB and (Mo_xW_{1-x})AlB, single crystal growth by metal Al solutions and crystal properties, 133, 36 NdB₆, polar and reticular microhardness anisotropy, **133**, 296 RNi₂B₂C systems chemical and physical properties, **133**, 169 superconducting and magnetic ordering temperatures for R = Tm or Er, effects of Pd, Pt, and Co dopants, 133, 5 Ni-6 mass% B-58.6 mass% Mo-10 mass% X (X = V,Fe,Co,Ti,Mn,Zr,Nb,W) high-strength boride base hard materials, 133, 243 Ln₇O₆(BO₃)(PO₄)₂ (Ln = La,Nd,Gd,Dy), X-ray powder diffraction and vibrational spectra studies, 129, 45 PrB₆, polar and reticular microhardness anisotropy, 133, 296 preface to 12th International Symposium on Boron, Borides, and Related Compounds, 133, 3 p-type materials, thermoelectric properties, 133, 314 rare earth transition metal borides and their hydrides, low-temperature synthesis, 133, 145 R-Rh-B and R-Rh-B-C systems (R = rare earth), single crystal growth from molten copper flux, 133, 82 RRh_2B_2C (R = rare earth), synthesis and characterization, 133, 77 α -rhombohedral, electronic structure, electron energy-loss spectroscopic study, 133, 156 β -rhombohedral B_{12} cluster in, icosahedral $B_{12}H_{12}$ cluster simulating, ground and excited states, 133, 178 complete optical spectrum, 133, 129 Fe-doped, Mössbauer spectroscopy and electrical conductivity, 133, 342 Fe- and V-doped icosahedral solids, electronic properties, **133**, 160 interaction of optically excited carriers with intraicosahedral phonons, **133**, 125 interband critical transition points, 133, 132 Li- and V-doped, electronic structure, electron energy-loss spectroscopic study, **133**, 152 metal dopant effects, 133, 302 modulated photocurrent measurements, 133, 224 superposition of Drude type and hopping type transport, **133**, 335 transient photoconduction, analysis under conditions allowing carrier injection from electrode, **133**, 97 transient photocurrent studies, 133, 201 Sc₂BC₂, bonding analysis, 133, 190 Si₃N₄-BN composite ceramic, preparation, aminoboranes as BN source for, **133**, 164 SmB_4 , polar and reticular microhardness anisotropy, 133, 296 SmB_6 compounds based on, magnetic excitation spectrum, effect of mixed-valences state, **133**, 230 FT Raman spectroscopy, 133, 264 polar and reticular microhardness anisotropy, 133, 296 in thin film technology, 133, 279 SrB₆, electronic structure calculations, 133, 51 $Sr_4Mn_3(B_{1-x}Mn_x)O_{10}$, related to cubic perovskite structure, synthesis and characterization, **134**, 395 TbB₄, polar and reticular microhardness anisotropy, 133, 296 TbB₆, incongruently melting, single crystal growth and properties, 133, 198 ThB₄, polar and reticular microhardness anisotropy, 133, 296 ThB₆, polar and reticular microhardness anisotropy, 133, 296 thin films, preparation and properties, 133, 100 TiR nanocrystalline materials, hardness, elastic modulus, and electrical resistivity, 133, 249 PVD coatings, structure and properties, 133, 117 in thin film technology, 133, 279 Ti-B-C system including sections TiC_y-TiB₂ and B₄C_y-TiB₂, **133**, 205 TiB₂-CrB₂-WB₂ supersaturated solid solutions, annealing, phase formation during, **133**, 25 TiN/TiB_2 nanocrystalline materials, hardness, elastic modulus, and electrical resistivity, 133, 249 TlB₃O₅, crystal structure, **131**, 370 TmB₄, polar and reticular microhardness anisotropy, 133, 296 UB₄, polar and reticular microhardness anisotropy, **133**, 296 VB₂, Czochralski-grown single crystals, microhardness, 133, 113 VB₃₂, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335 YB_6 electronic structure calculations, 133, 51 incongruently melting, single crystal growth and properties, **133**, 198 in thin film technology, **133**, 279 YB_{25} , powder X-ray diffraction and electron diffraction studies, 133, 122 YB_{56} and YB_{62} with YB_{66} -type structure, structural refinement, 133, 16 YB_{66} (100) surface structure and chemistry, 133, 31 interband critical transition points, 133, 132 modulated photoconductivity, 133, 195 reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335 YbB₆, polar and reticular microhardness anisotropy, **133**, 296 YBO₃, structure, 128, 261 $Y_{17.33}(BO_3)_4(B_2O_5)_2O_{16}$, structure and luminescence, 134, 158 YB₄₁Si_{1.2}, crystal structure, 133, 11 YB₄₄Si_{1.0}, single crystal growth, **133**, 55 Y-Pd-B-C system, chemical and physical properties, 133, 169 ZrB₂, in thin film technology, 133, 279 ZrB₁₂, in thin film technology, **133**, 279 **Bromine** B_9Br_9 , synthesis, crystal structure, and electronic structure, **133**, 59 $Me^+Br \cdot Me^{2+}Br_2 \cdot 6H_2O$ ($Me^+ = K,NH_4,Rb;$ $Me^{2+} = Co,Ni$), crystal- $Me^+Br^+Me^-Br_2^+\Theta H_2O$ ($Me^+=K,NH_4,RB$; $Me^{-+}=CO,NI$), crystal lization and structure, **129**, 200 UBrPO₄·2H₂O, structure determination from powder X-ray diffraction data, **132**, 315 Bronzes blue potassium molybdenum, soft chemical modification, 128, 256 hydrated potassium molybdenum, preparation and thermal decomposition, 132, 330 Na_{0.10}WO₃, with distorted perovskite structure, X-ray and electron diffraction study, **133**, 479 Pb_{0.26}WO₃, X-ray and electron diffraction study, **130**, 176 MPd_3S_4 (M = La,Nd,Eu), crystal structure and electrical conductivity, 129. 1 $Sb_{0.16}WO_3$ intergrowth tungsten bronze, X-ray diffraction and electron diffraction study, 134, 344 Brownmillerite structure Ba₂In₂O₅, computer simulation study, **128**, 137 Brushite protonic mobility in, IR spectroscopic and neutron scattering studies, 132, 6 Bulk modulus high-strength boron compounds, 133, 88 C Cadmium Cd₈As₇Cl: novel pnictidohalide with new structure type, **134**, 282 $Cd_3^{II}[(Fe^{II}/Co^{II})(CN)_6]_2 \cdot 14H_2O$, X-ray diffraction and spectral studies, **129**, 17 doping of ZnO thin films, 128, 176 $La_{2-x}Cd_xRu_2O_{7-\delta}$, pyrochlore oxides, synthesis and characterization, 129, 308 NaCaCdMg₂(AsO₄)₃, alluaudite-like structure, 131, 298 Nd_{0.6}(Ca_{0.4-x}Cd_x)MnO₃ perovskites, charge order-disorder transition, 134, 215 Calcium $Bi_{2-x}Pb_xSr_{1.5}Ca_{1.5}Mn_2O_{9-\delta}$ with 2212 structure, synthesis and crystal chemistry, **132**, 420 Ca²⁺, electrochemical doping of oxide ceramics with Ca-β"-Al₂O₃ ionic conductors, 128, 93 Ca₈[Al₁₂O₂₄](MoO₄)₂, structure and high-temperature phase transitions, **129**, 130 CaB₆, electronic structure calculations, 133, 51 CaBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115 $Ca_3(Cr,Al)_2Si_3O_{12}$ garnets, electron density study, 132, 432 $Ca_{1-x}Eu_xMnO_3$ (0 $\le x \le 1$) perovskites, magnetic study, 131, 144 CaFe₂P₂, electronic structure and chemical bonding, first-principles study, **129**, 147 CaH₂, self-propagating mechanochemical reaction with hexachlorobenzene, 129, 263 CaHPO₄ and CaHPO₄·2H₂O, protonic mobility in, IR spectroscopic and neutron scattering studies, 132, 6 $Ca_{1-x}La_xS(x = 0-0.3)$, structural and luminescence properties, 131, 101 $Ca_4Mo_{18}O_{32}$, with Mo_n (n=2,4,6) cluster chains, anomalous metal-insulator transitions in, 134, 45 Ca_3N_2 , solid solutions with LaN, formation of defect rock salt nitrides $La_{1-x}Ca_xN_{1-x/3}$, 129, 144 CaNi₂P₂, electronic structure and chemical bonding, first-principles study. **129**, 147 Ca(OD)₂ II prepared at high pressure, structure from powder neutron diffraction, relationship to ZrO₂ and EuI₂ structures, **132**, 267 Ca(OH)₂, incipient reaction with SiO₂ under moderate mechanical stressing, mechanisms: changes in short-range ordering, 130, 284 Ca₃(P₅O₁₄)₂, characterization, 129, 196 Ca(PO₃)₂-CaB₄O₇-Na₂B₄O₇-Nb₂O₅, borophosphate glasses, synthesis and second-harmonic generation after poling treatment, **133**, 529 Ca₃ReO₆, crystal structure, **131**, 305 Ca_{1-x}Sm_xMnO₃, electron-doped, CMR effect in, 134, 198 δ -Ca_{0.25}V₂O₅·H₂O, crystal structure, **132**, 323 CaV_2O_5 , crystal structure and spin gap state, letter to editor, 127, 359; addendum, 129, 367 Ca–Zr–O–N system, oxynitride synthesis in ZrO₂-rich part and characterization. 128, 282 CuCa₂(HCOO)₆, thermal decomposition, 132, 235 LaCaAlO₄, K₂NiF₄-type aluminate single crystals, decomposition processes in, X-ray diffraction study, 134, 132 $\text{La}_{1-x}\text{Ca}_x\text{N}_{1-x/3}$ (0 < x < 0.7), defect rock salt nitrides prepared from LaN and Ca_3N_2 , 129, 144 $NaCa_2M_2^{2+}(AsO_4)_3$ ($M^{2+}=Mg,Ni,Co$), cationic substitution effects on garnet–alluaudite polymorphism, **131**, 290 NaCaCdMg₂(AsO₄)₃, alluaudite-like structure, 131, 298 Nd_{0.6}(Ca_{0.4-x}Cd_x)MnO₃ perovskites, charge order–disorder transition, 134. 215 Pr_{0.5}Ca_{0.5}MnO₃, insulator-metal transition induced by Cr and Co doping, letter to editor, 130, 162 $(Sr,Ca)_4Cu_6O_{10}$ three-leg-ladder compound, X-ray single-crystal structure analysis, ${\bf 134,}~427$ SrO-CaO-CuO system under high pressure, compounds and phase relations, 132, 274 zirconolite-4M substituted with Nd, analysis and structure, 129, 346 Calorimetry thermodynamics of $K_2U_4O_{12}$ and $K_2U_4O_{13}$, 132, 342 η-Carbide structure unique, synthesis of Fe₄W₂N with, 134, 302 Carbon $[Al_3P_4O_{16}]^3 - 3[CH_3CH_2NH_3]^+$, nonaqueous synthesis and characterization, **129**, 37 anhydrous ethylenediamine trimolybdate, hydrothermal synthesis and crystal structure, letter to editor, **132**, 224 Ba-Cu-C-O system, structural equivalence of CO₃ and CuO_x groups, 129, 165 $Ba_{88}Ni_{87}O_{156}(CO_3)_{19},$ synthesis and structure, 128, 220 Ba₁₁Pd₁₁O₂₀(CO₃)₂, synthesis and structure, **128**, 220 B₄C electronic structure calculations, 133, 51 lattice vibrations, 133, 44 $B_{4.23}C$, interband critical transition points, 133, 132 B_{4.3}C and ¹⁰B_{4.3}C, interband critical transition points, **133**, 132 B_{4.51}C, interband critical transition points, **133**, 132 $B_{6.28}C$, interband critical transition points, 133, 132 B_{6.3}C, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335 B_{7.91}C, dielectric function, description based on superposition of Drude type and hopping type transport, **133**, 335 $B_{8.52}C$, interband critical transition points, 133, 132 B₉C, lattice vibrations, 133, 44 B_{10.37}C interaction of optically excited carriers with intraicosahedral phonons, **133**, 125 interband critical transition points, 133, 132 $B_{13}C_2$, lattice vibrations, 133, 44, 93 B-C-Al compounds with boron carbide structure, IR active phonon spectra, 133, 254 B₄C-C, injection molded ceramics, mechanical properties, 133, 68 B-C-N-O system, syntheses at high pressure and temperature in electron energy-loss spectroscopy, 133, 365 materials prepared by, 133, 356 $B_6O{-}B_4C$ solid solutions, synthesis at high pressure and temperature electron energy-loss spectroscopy, 133, 365 preparation and characterization, 133, 356 R_4C_5 (R = Y,Gd,Tb,Dy,Ho), crystal structure, **132**, 294 carbon black, as sintering aid for B₄C, 133, 68 carbon fiber/BN matrix microcomposite, preparation, aminoboranes as BN source for, 133, 164 C_6Cl_6 , self-propagating mechanochemical reaction with CaH_2 , **129**, 263 $Cd_3^{II}[(Fe^{III}/Co^{III})(CN)_6]_2 \cdot 14H_2O$, X-ray diffraction and spectral studies, **129**, 17 $Ce_5B_2C_6$, $Ce_5B_4C_5$, and $Ce_{10}B_9C_{12}$, bonding analysis, 133, 190 $(CH_3NH_3)_2M(II)(SO_4)_2 \cdot 6H_2O$ (M(II) = Cu,Zn,Ni), IR and Raman spectra, 133, 407 C₂₉H₃₀N₅O₄S₂Ru, crystal structure, 132, 60 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)]$, synthesis and characterization, 128, 318 Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)], two-dimensional solid with pillared layers, synthesis and structure, **132**, 144 CuCa₂(HCOO)₆, thermal decomposition, 132, 235 [Cu(II)(μ-3,5-dimethylpyrazolate)(μ-OH)], antiferromagnetic coupling, 132, 24 Cu₂Fe(CN)₆, interaction with silver ions in solution, 132, 399 [Cu(II)(6-mercaptopurinolate²⁻)]_n, magnetic study, 132, 78 Cu_xMn_{1-x}(HCOO)₂·2H₂O mixed crystals, thermal decomposition to copper-manganese oxides, **133**, 416 Cu₂(OH)₃(CH₃COO)·H₂O, preparation, characterization, and *ab initio* X-ray powder diffraction, **131**, 252 [Cu(II)(μ -pyrazolate)(μ -OH)], antiferromagnetic coupling, 132, 24 $\text{EuB}_{6-X}\text{C}_X$ ($X \approx 0.1$), FT Raman spectroscopy, 133, 264 [Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], hydrothermal synthesis, crystal structure, and magnetic properties, **134**, 349 Ga(CN)₃, disordered crystal structure, 134, 164 graphite, BN coating on, preparation, aminoboranes as BN source for, 133, 164 KNa(C₄H₄O₆)·4H₂O, structure, **131**, 350 $K/V/P/N(C_2H_5)_3/H_2O$ hydrothermal system, analysis at 473 K, **134**, 286 La₁₅B₁₄C₁₉, bonding analysis, **133**, 190 LiKCO₃, crystal structure, neutron powder diffraction study, 128, LuNi₂B₂C superconductor, comparison with nonsuperconducting SrRh₂P₂, **130**, 254 4-methylbenzeneamine, solid-solid reactions with CuCl₂·2H₂O, CoCl₂·6H₂O, and NiCl₂·6H₂O, **132**, 291 [Mg $_{0.174}$ Ga $_{0.256}$ (OH) $_2$](CO $_3$) $_{0.134}\cdot$ mH $_2$ O, synthesis, characterization, and 1H and 71 Ga MAS NMR, 131, 78 Na₃Eu(CO₃)₃, structural and optical studies, 132, 33 $NaO_{0.44}C_{5.84}$, graphite intercalation compound with sodium and peroxide, 131, 282 $N(CH_3)_4 \cdot Zn(H_2PO_4)_3$, molecular cluster, synthesis and crystal structure, 131, 363 N(CH₃)₄·Zn(HPO₄)(H₂PO₄), open framework phase built up from low-density 12-ring topology, synthesis and crystal structure, **131**, 363 NH₂CH=NH₂SnI₃ cubic perovskite and related systems, synthesis, resistivity, and thermal properties, **134**, 376 [NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganicorganic layers, synthesis and characterization, **132**, 229 RNi₂B₂C systems chemical and physical properties, 133, 169 superconducting and magnetic ordering temperatures for R = Tm or Er, effects of Pd, Pt, and Co dopants, 133, 5 $Ln_5Os_3C_{4-x}$ (Ln = La-Nd,Sm), preparation and crystal structure, 131, 49 $[PMo_{4.27}W_{7.73}O_{40}^{6-}][H_3N(CH_2)_6NH_3^{2+}]_3$, hydrothermal synthesis and structure, 129, 257 (Pr/La)Co(CN)₆·5H₂O, mixed cationic systems, synthesis and crystal structure, 129, 12 RRh_2B_2C (R = rare earth) single crystal growth from molten copper flux, 133, 82 synthesis and characterization, 133, 77 Sc₂BC₂, bonding analysis, 133, 190 Sn(O₃PCH₂CH₃) layered phase, room-temperature synthesis and structural characterization, 132, 438 Ti-B-C system including sections TiC_v-TiB₂ and B₄C_v-TiB₂, 133, 205 U₂PtC₂, heavy fermion superconductors, chemical bonding topology, **131,** 394 VC, metal-to-metal bonding in, 128, 121 Y-Pd-B-C system, chemical and physical properties, 133, 169 Zn(CN)2, disordered crystal structure, 134, 164 Carbonates LiClO₄-carbonates electrolytes, electrochemical intercalation of Li ions into polyparaphenylene in, 132, 434 Cation ordering in [(Tl,M)O] layers of 1201-based cuprate, similarity to ordering in fcc-based alloys, 132, 113 Cation sublattices in ABO₄ structures, 129, 82 Cell parameter elementary, of synthetic oxides-garnets, empirical formula for calculation of, **134**, 338 Ceramics Ba_{5-x}Sr_xNb₄O₁₅ microwave dielectric resonators, vibrational analysis, **131,** 2 fluoridated PZT, for powder transducers, 130, 103 injection molded, B₄C-C, mechanical properties, 133, 68 oxides, electrochemical doping with $M-\beta''$ -Al₂O₃ ionic conductors, 128, 93 Si₃N₄/BN composite, preparation, aminoboranes as BN source for, 133, 164 Cerium Ag₂Ce(H₂O)(NO₃)₅, structure and thermal decomposition, temperature-dependent X-ray powder diffraction study, 132, 361 AlCeO₃, cation arrays in perovskite-type compounds, 128, 69 CeB₆ electronic structure calculations, 133, 51 polar and reticular microhardness anisotropy anisotropy, 133, 296 in thin film technology, 133, 279 $Ce_5B_2C_6$, $Ce_5B_4C_5$, and $Ce_{10}B_9C_{12}$, bonding analysis, 133, 190 Ce₃Cu₄P₄O₂, synthesis, crystal structure, and properties, 129, 250 CeCu₂Si₂, heavy fermion superconductors, chemical bonding topology, 131, 394 CeOs₃B₂, heavy fermion superconductors, chemical bonding topology, **131,** 394 $Ce_5Os_3C_{4-x}$, preparation and crystal structure, 131, 49 CeO₂/SiO₂ systems, spreading and phase transformations in, 131, 121 CeRh₂B₂C, synthesis and characterization, 133, 77 CeRu₃B₂, heavy fermion superconductors, chemical bonding topology, **131.** 394 CeRu₃Si₂, heavy fermion superconductors, chemical bonding topology, **131,** 394 CeRu₄Sn₆, crystal structure, specific heat, and ¹¹⁹Sn Mössbauer spectroscopy, 134, 326 γ-Ce₂S₃, doped and undoped, band electronic structure study through LMTO-TB calculations, 128, 197 CeTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, 130, 277 $Cu_x(CeS)_{1+v}(NbS_2)_2$, phase transition, 134, 99 50Na₂O-49P₂O₅-0.5Eu₂O₃-0.5CeO₂: fluorescent photosensitive glass for optical memory and fluorescence holography, 134, 362 $(Nd_{2-0.125}Ce_{0.125}CuO_{4-0.625})_{2\times 4}$, superconductive mechanism, 129, 174 Pd/CeO₂/SiO₂ systems, spreading and phase transformations in, 131, 121 $(R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$ (R = Nd,Sm,Eu), structural properties and oxygen stoichiometry, 133, 445 (Pr_{1.5}Ce_{0.5})Sr₂Cu₂TaO_{10-δ}, structural properties and oxygen stoichiometry, 133, 445 sol-gel alumina doped with, X-ray diffraction, FTIR, and NMR studies, **128,** 161 (YO_{1.5})_{0.2}(CeO₂)_{0.8}, reaction at interface with yttria-stabilized zirconia, TEM study, 129, 74 Cermets high-strength boride base hard materials, effects of alloying elements, **133**, 243 Cesium CsIn(MoO₄)₂ and CsIn(WO₄)₂, vibrational characteristics, 129, 287 Cs₂KEuCl₆, crystal structure by powder x-ray diffraction, 132, 1 Cs₂KTbCl₆, crystal structure by powder x-ray diffraction, 132, 1 CsMo₆O₁₀(Mo₂O₇)(PO₄)₄, synthesis, crystal structure, and magnetic properties, 128, 233 Cs₃Sb₂I₉, reconstructive phase transformation and kinetics by means of Rietveld analysis of X-ray diffraction and 127I NQR, 134, 319 $Cs_4Te_xSe_{16-x}$ (x = 1,4) and $Cs_4Te_{9.74}Se_{13.26}$, with ordered Se/Te rings and chains, methanolothermal design and structure, 134, 364 CsTiSi₂O_{6.5} crystal structure, neutron and X-ray diffraction study, 130, 97 EXAFS and XANES studies, 129, 206 Cs₂TiSi₆O₁₅, crystal structure, 131, 38 Cs₂V₄O₁₁ with unusual V–O coordinations, crystal structure, 134, 52 Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)], two-dimensional solid with pillared layers, synthesis and structure, 132, 144 Chain structure $Na_3M(OH)(HPO_4)(PO_4)$ (M = Al,Ga), 128, 21 Chalcogen rings heteronuclear, $Cs_4Te_xSe_{16-x}$ (x = 1,4) and $Cs_4Te_{9.74}Se_{13.26}$ with ordered Se/Te rings and chains, methanolothermal design and structure, 134, 364 Charge-discharge process in LiMn₂O₄, in situ XAFS study, letter to editor, 133, 586 Charge ordering in Nd_{0.6}(Ca_{0.4-x}Cd_x)MnO₃ perovskites: charge order-disorder transition, 134, 215 in rare earth manganates, dependence on size of A-site cations, letter to editor, 129, 363 Charge transfer geminal, in superconductivity, 129, 174 Chemical diffusion coefficient $Ag_{1.92}$ Te at 160°C, **130**, 140 Chemical lithium insertion In₁₆Fe₈S₃₂ spinel, structure and local environment following, 134, 238 Chemical vapor deposition epitaxial growth of rhombohedral B₁₂P₂ single crystalline films by, 133, 104 preparation of boron thin films, 133, 100 Chimie douce reactions changes in magnetic coupling after, analysis: magnetic structures of $LiMnXO_4(OD)$ (X = P,As), **132**, 202 $(H_3O)Yb_3F_{10} \cdot H_2O$ synthesis, 128, 42 Ba₂Cu₃Cl₂O₄, synthesis and properties, 124, 319; comment, 130, 161 Ba₄CuMO₄Cl₄ (M = Li,Na), Cu(III) oxy-chlorides, synthesis, structure, and electrical and magnetic properties, letter to editor, **129**, 360 Ba₂MM'F₇Cl (M,M' = Mn,Fe,Co,Ni,Zn), magnetic properties and neutron diffraction study, **131**, 198 Ba₅Ru_{1.6}W_{0.4}Cl₂O₉, 10-layer perovskite-related oxyhalide, crystal structure, **132**, 407 B₉Cl₉, synthesis, crystal structure, and electronic structure, 133, 59 CaBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115 C₆Cl₆, self-propagating mechanochemical reaction with CaH₂, **129**, 263 Cd₈As₇Cl: novel pnictidohalide with new structure type, **134**, 282 $CoCl_2 \cdot 6H_2O$, solid-solid reactions with 4-methylbenzeneamine, 132, Cs₂KEuCl₆, crystal structure by powder x-ray diffraction, 132, 1 Cs₂KTbCl₆, crystal structure by powder x-ray diffraction, 132, 1 CuCl₂·2H₂O, solid-solid reactions with 4-methylbenzeneamine, 132, 291 LiClO₄-carbonates electrolytes, electrochemical intercalation of Li ions into polyparaphenylene in, **132**, 434 Li₄NCl, preparation and crystal structure, 128, 241 Li₅NCl₂, ordered and disordered phases, preparation and crystal structure, 130, 90 (ND₄)₂PdCl₆, antifluorite, phase analysis, 131, 221 NiCl₂·6H₂O, solid-solid reactions with 4-methylbenzeneamine, 132, Pb₂Sr₂Cu₂TaO₈Cl, layered cuprate with hematophanite structure, synthesis and characterization, **130**, 154 SrBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115 UCIPO₄·2H₂O, structure determination from powder X-ray diffraction data, 132, 315 ### Chromium Ca₃(Cr,Al)₂Si₃O₁₂ garnets, electron density study, 132, 432 CrN, synthesis from ammonolysis of Cr₂S₃, 134, 120 Cr₂O₃ microcrystal surface, chemical behavior of Sn dopant atoms on, Mössbauer study, 132, 284 Cr₂S₃, ammonolysis: synthesis of CrN, **134**, 120 CrWN₂, chemical synthesis and crystal structure, 128, 185 CrZr_{0.75}Nb_{0.25}F₆, antiferrodistortive order in solid solution, **131**, 231 doping of Pr_{0.5}Ca_{0.5}MnO₃, induction of insulator–metal transition, letter to editor, **130**, 162 $\text{LiCr}_y \text{Mn}_{2-y} \text{O}_4$ (0 $\leq y \leq$ 1), structure modifications induced by electrochemical Li deintercalation, Rietveld analysis, **132**, 372 $(Mo_xCr_{1-x})AlB$, single crystal growth by metal Al solutions and crystal properties, 133, 36 Nd(Cr_{1-x}Fe_x)O₃, relationship of crystal structure and electrical properties. **131.** 108 $Nd(Cr_{1-x}Ni_x)O_3$, electrical properties, effect of spin state of Ni^{3+} ions, 134, 382 $NiCr_2S_4$, structure and magnetism, powder neutron diffraction study, 134, 110 Rb₂Cr₂O(AsO₄)₂, preparation and crystal structure, 134, 22 Rb_{0.62}Cr₅Te₈ pseudo-hollandite, synthesis, crystal structure, and electronic band structures of Rb_xCr₅Te₈ phases, **131**, 326 SbCrSe₃ 1D ferromagnet, structure determination by HREM image analysis, 132, 257 Sr₂CuCrO₃S, crystal structure, 134, 128 tetrahedral oxo and hydroxo Cr(IV) clusters, valence stabilization, mixed crystal chemistry, and electronic transitions, 128, 1 ThCr₂Si₂-type transition metal compounds, LMTO band structure calculations, **130**, 254 TiB_2 – CrB_2 – WB_2 supersaturated solid solutions, annealing, phase formation during, 133, 25 Ti₄CrBi₂, preparation and properties, 133, 400 Y₃(Al,Cr)₂Al₃O₁₂ garnets, electron density study, 134, 182 [Zn-Cr-SO₄] lamellar double hydroxides, selective synthesis, 130, 66 Citric acid in synthesis of LaMnO_{3+ δ} by firing gels, **129**, 60 Cluster model for cubic plastic phase of ethanol, letter to editor, 130, 167 Cluster phases rare-earth metal iodides with transition metal interstitials, 129, 277 CMR effect in electron-doped Ca_{1-x}Sm_xMnO₃, **134**, 198 Cobalt Ba₂CoM'F₇Cl (M' = Mn,Fe,Co,Ni), magnetic properties and neutron diffraction study, **131**, 198 BaCoO_{2.94} hexagonal related perovskites, ordering of anionic vacancies in, **128**, 130 Ba(CoPO₄)₂·H₂O, lamellar hydrated phosphate with two-dimensional array of Co-O-Co network, **131**, 387 $Me^+ Br \cdot CoBr_2 \cdot 6H_2O$ ($Me^+ = K, NH_4, Rb$), crystallization and structure, **129**, 200 Cd^{II}₃[(Fe^{II}/Co^{III})(CN)₆]₂·14H₂O, X-ray diffraction and spectral studies, 129, 17 An_2Co_2X (An = Pu,Am; X = In,Sn), synthesis, crystal chemistry, and physical properties, **134**, 138 CoB₄₉, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335 CoCl₂·6H₂O, solid–solid reactions with 4-methylbenzeneamine, 132, Co₃Fe₂(SeO₃)₆· 2H₂O, synthesis, crystal structure, and IR and Mössbauer spectroscopy, **131**, 54 Co(II) α-hydroxide, hydrotalcite-like phases, 128, 38 $(Co,Mg)_{10n-2}Ge_{3n+1}O_{16n}$, structure, 130, 9 doping of Pr_{0.5}Ca_{0.5}MnO₃, induction of insulator–metal transition, letter to editor, **130**, 162 effect on superconducting and magnetic ordering temperatures in RNi_2B_2C (R = Tm,Er), 133, 5 Hf₂CoP, structure and characterization, 131, 379 La₂ICo₂, condensed cluster phase, 129, 277 La₂O₃-Co-Co₂O₃ system, thermogravimetric study at 1100 and 1150°C, **131**, 18 La_{0.6}Sr_{0.4}Co_{1-y}Fe_yO_{3- δ} (y=0-0.6), thermodynamic quantities and defect structure, high-temperature coulometric titration studies, **130**, 302 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$, Coulometric titration at high temperature: electronic band structure effect on nonstoichiometry behavior, 133, 555 $LiCoO_2$, boron-doped, structure and electrochemical properties, 134, 265 NaCa₂Co₂⁺(AsO₄)₃, cationic substitution effects on garnet–alluaudite polymorphism, **131**, 290 NaCoPO₄ polymorph with edge-sharing Co²⁺ octahedral chains, synthesis and characterization, **131**, 160 with trigonal bipyramidal Co²⁺ and tunnel structure, **129**, 328 Na₂CoSi₄O₁₀, magnetic behavior, **131**, 335 Ni-6 mass% B-58.6 mass% Mo-10 mass% Co, high-strength boride base hard materials, 133, 243 $(Pr/La)Co(CN)_6 \cdot 5H_2O$, mixed cationic systems, synthesis and crystal structure, 129, 12 Ti₄CoBi₂, preparation and properties, 133, 400 YCoO₃, structure from neutron diffraction, 130, 192 Zr₂CoP, structure and characterization, 131, 379 Columbite MgNb₂O₆, crystal structure refinement from neutron powder diffraction data, **134**, 76 Combustion method synthesis of fine ferrite particles, 134, 227 Complex structures description from stackings of UGP, 128, 52 Computer simulation Ba₂In₂O₅ with Brownmillerite structure, 128, 137 lanthanum magnesium hexaaluminate defect energetics and crystal chemistry, 130, 199 Conductors Bi–Ln–V–O anionic conductors with δ-Bi₂O₃ fluorite-type structure (Ln = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), **134**, 219 two-dimensional, $TeMo_5O_{16}$, synthesis and crystal structure, 129, 303 Coordination polyhedra in ABO₄ structures, 129, 82 Copper AlSr₂YCu₂O₇, structural order/disorder in, 133, 434 BaCuB₂O₅, noncentrosymmetric pyroborate, synthesis, structure, and properties, **129**, 184 Ba₂Cu₃Cl₂O₄, synthesis and properties, **124**, 319; comment, **130**, 161 Ba–Cu–C–O system, structural equivalence of CO₃ and CuO_x groups, **129**, 165 Ba₆Cu₁₂Fe₁₃S₂₇, synthesis and crystal structure, 128, 62 RBa₂Cu₄O₈ (R = Gd,Ho), superconductors, Sr substitution in, **128**, 310 Ba₄CuMO₄Cl₄ (M = Li,Na), Cu(III) oxy-chlorides, synthesis, structure, and electrical and magnetic properties, letter to editor, **129**, 360 ${\rm Ba_2Cu_xZn_{1-x}WO_6}$ mixed crystals, cooperative Jahn-Teller effect in Raman spectra, 129, 117 Bi₂Sr₂CuO₆, antiferromagnetic order, 133, 372 CeCu₂Si₂, heavy fermion superconductors, chemical bonding topology, **131**, 394 (CH₃NH₃)₂Cu(II)(SO₄)₂·6H₂O, IR and Raman spectra, 133, 407 CuX_4 (X = O,S,Se), edge-sharing square planar units, transition metal compounds with, square planar to rectangular distortion in, 128, 181 CuAl₂, structural relationship to SiF₄, **132**, 151; *erratum*, **134**, 431 *Ln*CuBaO₅ (*Ln* = Yb,Tm,Er,Ho,Dy,Gd), Gibbs free energy of formation, determination by EMF method, **134**, 85 CuCa₂(HCOO)₆, thermal decomposition, 132, 235 CuCl₂·2H₂O, solid-solid reactions with 4-methylbenzeneamine, 132, [Cu(II)(μ -3,5-dimethylpyrazolate)(μ -OH)], antiferromagnetic coupling, 132, 24 Cu₂Fe(CN)₆, interaction with silver ions in solution, 132, 399 [Cu(II)(6-mercaptopurinolate²⁻)]_n, magnetic study, 132, 78 $Cu_xMn_{1-x}(HCOO)_2 \cdot 2H_2O$ mixed crystals, thermal decomposition to copper-manganese oxides, 133, 416 CuMoO₄, p-T phase diagram, 132, 88 CuNbOF₅·4H₂O, infrared spectroscopy, **133**, 576 Cu₂(OH)₃(CH₃COO)· H₂O, preparation, characterization, and *ab initio* X-ray powder diffraction, **131**, 252 Ln₃Cu₄P₄O₂ (Ln = La,Ce,Nd), synthesis, crystal structure, and properties, **129**, 250 [Cu(II)(μ -pyrazolate)(μ -OH)], antiferromagnetic coupling, 132, 24 $ACu_{7-x}S_4$ (A = Tl,K,Rb), electrical resistivity anomalies and superlattice modulations, role of vacancy ordering, **134**, 5 CuSb₂O₆, dimorphism, solid state and EPR study, 131, 263 $Cu_x(MS)_{1+y}(NbS_2)_2$ (M = Ce,Sm), phase transition, 134, 99 doping of ZnO thin films, 128, 176 ${\rm Hg_2Ba_2}Ln{\rm Cu_2O_8}_{-\delta}$ ($Ln={\rm Nd-Gd,Dy-Lu}$), synthesis and structural and magnetic characterization, 132, 163 $In_2Ba_2CuO_{6-\delta}$, layered cuprate, synthesis and characterization, **131**, 177 LaCuO_{3-y} ($0 \le y \le 0.5$), copper valence and properties, control by oxygen content adjustment, **130**, 213 La₂CuO_{4+δ}, electrochemically oxidized particles prepared by sol–gel method, structural characterization, **131**, 246 La₂Cu(SeO₃)₄, synthesis and crystal structure, **133**, 572 La_{2-x}Sr_xCuO_{4-δ}, defect chemistry: oxygen nonstoichiometry and thermodynamic stability, 131, 150 $La_{2-x}Sr_{2x}Cu_{1-x}M_xO_4$ (M = Ti,Mn,Fe,Ru), linear Cu–O–M electronic interaction in two dimensions, **128**, 169 Li₃Cu₂SbO₆ with partially ordered rock salt structure, synthesis, 131, molten flux, single crystal growth in R-Rh-B and R-Rh-B-C (R = rare earth) systems from, 133, 82 Na₂Cu(SO₄)₂·2H₂O, IR and Raman spectra, 133, 407 $(Nd_{2-0.125}Ce_{0.125}CuO_{4-0.625})_{2\times 4}$, superconductive mechanism, 129, 174 Pb₂Sr₂Cu₂TaO₈Cl, layered cuprate with hematophanite structure, synthesis and characterization, **130**, 154 $(R_{1-x}, Pr_x)Ba_4Cu_7O_{14+\delta}$ (R=Nd, Eu, Tm), high-pressure synthesis and characterization, **132**, 73 $(R_{1.5-x} Pr_x Ce_{0.5}) Sr_2 Cu_2 NbO_{10-\delta}$ (R = Nd, Sm, Eu), structural properties and oxygen stoichiometry, **133**, 445 $(Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta}$, structural properties and oxygen stoichiometry, 133, 445 $(Sr,Ca)_4Cu_6O_{10}$ three-leg-ladder compound, X-ray single-crystal structure analysis, **134**, 427 Sr₃Cu₂Fe₂O₅S₂, crystal structure, **134**, 128 Sr_2CuMO_3S (M = Cr, Fe, In), crystal structure, 134, 128 $Sr_2Cu_2MO_2S_2$ (M = Mn,Zn), synthesis and properties, 130, 319 SrO-CaO-CuO system under high pressure, compounds and phase relations, 132, 274 Tl₅Ba₃Sr₅Cu₃O₁₉, 1201 shear like phase, **128**, 150 $Tl_{1-x}Sr_2Cu_{1-y}M_{x+y}O_{5-\delta}$ (M = Nb,Ta,W), 1201-based cuprate, cation ordering in, **132**, 113 ultrafine powder, oxidation resistance, improvement by phosphating treatment, 130, 157 YBa2Cu3Ov electrochemical doping with *M-β"*-Al₂O₃ ionic conductors, **128**, 93 single crystal, structure and electron density, effects of oxygen introduction, **130**, 42 YBa₂Cu₃O_{6+x}, orthorhombic, dependence of lattice parameters on oxygen content, **134**, 356 YBa₂Cu₃O_{7- δ}, substrates Ba_{2-x}Sr_xDyTaO₆ (x = 0,1,2) for, development and dielectric properties, **133**, 522 (YBa₂Cu₃O_{7-0.25})₄, superconductive mechanism, **129**, 174 Zn(Mg)_{1-x}Cu_xSb₂O₆, trirutile-type compounds, Cu²⁺ polyhedra in, geometry and electronic structure, **131**, 263 Coulometric titration $La_{0.6}Sr_{0.4}Co_{1-y}Fe_yO_{3-\delta}$ (y=0–0.6) at high temperature, **130**, 302 $La_{1-x}Sr_xCoO_{3-\delta}$ at high temperature, **133**, 555 Cristobalite related phases in $NaAlO_2$ - $NaAlSiO_4$ system, XRD and electron diffraction study, 131, 24 Crystal chemistry An_2T_2X (An = Pu,Am; T = Co,Ir,Ni,Pd,Pt,Rh; X = In,Sn), 134, 138 $Bi_2O_3-MoO_3-V_2O_5$ system, 131, 236 $Bi_{2-x}Pb_xSr_{1.5}Ca_{1.5}Mn_2O_{9-\delta}$ with 2212 structure, $\boldsymbol{132},\,420$ lanthanum magnesium hexaaluminate, 130, 199 mixed, in tetrahedral oxo and hydroxo Cr(IV), Mn(V), and Fe(VI) clusters, theoretical study, 128, 1 Na₃(MoO)₂(PO₄)₃ with intersecting tunnel structure, 132, 249 RRh_2B_2C (R = rare earth), 133, 77 $W_5 As_{2.5} P_{1.5}$ with one-dimensional vertex-linked W_6 cluster, 131, 310 Crystal-field analysis Am³⁺ in LiYF₄, **129**, 189 Crystal growth 2-amino-5-nitropyridinium chloride, **129**, 22 incongruently melting TbB₆, DyB₆, HoB₆, and YB₆ single crystals, 133, 198 $(Mo_xCr_{1-x})AlB$ and $(Mo_xW_{1-x})AlB$ single crystals, 133, 36 CrWN₂, 128, 185 R-Rh-B and R-Rh-B-C (R = rare earth) single crystals from molten CrZr_{0.75}Nb_{0.25}F₆, antiferrodistortive order in solid solution, 131, 231 copper flux, 133, 82 Cs₂KEuCl₆, powder x-ray diffraction study, 132, 1 rhomobhedral B₁₂P₂ single crystalline films, epitaxial growth by chem-Cs₂KTbCl₆, powder x-ray diffraction study, **132**, 1 ical vapor deposition, 133, 104 $CsMo_6O_{10}(Mo_2O_7)(PO_4)_4$, 128, 233 VB₂ single crystals grown by Czochralski technique, microhardness, 133, $Cs_4Te_xSe_{16-x}$ (x = 1,4) and $Cs_4Te_{9.74}Se_{13.26}$, 134, 364 113 CsTiSi₂O_{6.5}, neutron and X-ray diffraction study, **130**, 97 YB₄₄Si_{1.0} single crystal, 133, 55 Cs₂TiSi₆O₁₅, 131, 38 Crystallography Cs₂V₄O₁₁ with unusual V-O coordinations, 134, 52 Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)] two-dimensional solid with pillared orientationally disordered phases in two-component systems, 133, 536 Crystals layers, 132, 144 diatomic, bond-charge calculation of electro-optic coefficients, 128, 17 CuMoO₄ phases, 132, 88 CuNbOF₅·4H₂O, disorder in, 133, 576 Crystal structure, see also Structure Ag₂Ce(H₂O)(NO₃)₅, temperature-dependent X-ray powder diffraction $Ln_3Cu_4P_4O_2$ (Ln = La,Ce,Nd), **129**, 250 study, 132, 361 EuI2, relationship to Ca(OD)2 II prepared at high pressure, powder Ag₄(2,2-dimethylglutarate)₂, 134, 332 neutron diffraction study, 132, 267 AgTaS₃, 132, 389 α-Fe₂O₃ doped with Sn and Ti and prepared by hydrothermal methods, Ag₂TiO₃, 134, 17 130, 272 Ag_{1.2}V₃O₈: relationship to Ag₂V₄O_{11-y} and interpretation of physical [Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], **134**, 349 M_3 Fe₂(SeO₃)₆·2H₂O (M = Mg,Co,Ni), 131, 54 properties, **134**, 294 Ag₂VP₂O₈, **130**, 28 Fe_4W_2N with unique η -carbide structure, 134, 302 $AlLnO_3$ (Ln = La, Ce, Pr, Nd, Sm, Ho), perovskite-type compounds, analy- $(Fe_{0.8}W_{0.2})WN_2$, 131, 374 sis on basis of cationic array, 128, 69 Ga(CN)₃, disordered structure, 134, 164 $Al_5Ln_3O_{12}$ (Ln = Gd-Lu), garnet-type compounds, analysis on basis of M_{10n-2} Ge_{3n+1}O_{16n} with M = (Co,Mg) or (Ni,Mg), 130, 9 cationic array, 128, 69 Hf₈Bi₉, 134, 26 $[Al_3P_4O_{16}]^{3-} \cdot 3[CH_3CH_2NH_3]^+, 129, 37$ $Hg_2Ba_2LnCu_2O_{8-\delta}$ (Ln = Nd-Gd,Dy-Lu), 132, 163 anhydrous ethylenediamine trimolybdate, letter to editor, 132, 224 Hg₂Mo₅O₁₆, **128**, 205 Aurivillius-related phases in Sb-(W,V)-O system, 128, 30 $H_xV_2Zr_2O_9 \cdot H_2O$ (x = 0.43), 128, 313 B_9X_9 (X = Cl,Br,I), **133**, 59 $In_2Ba_2CuO_{6-\delta}$ layered cuprate, **131**, 177 Ba(CoPO₄)₂·H₂O, lamellar hydrated phosphate with two-dimensional KAl(HPO₄)₂·H₂O, 132, 47 array of Co-O-Co network, 131, 387 K₅In₅Ge₅As₁₄ layered materials, **130**, 234 BaCuB₂O₅, noncentrosymmetric pyroborate, 129, 184 K₈In₈Ge₅As₁₇ layered materials, **130**, 234 Ba₂Cu₃Cl₂O₄, **124**, 319; comment, **130**, 161 K_2ZnGeO_4 , α and β forms, 134, 59 La₂CuO_{4+δ}, electrochemically oxidized particles prepared by sol-gel Ba₆Cu₁₂Fe₁₃S₂₇, **128**, 62 BaGe₂, 133, 501 method, 131, 246 Ba₂In₂O₅, Brownmillerite-structured, computer simulation study, 128, La₂Cu(SeO₃)₄, **133**, 572 137 $LaFe_xNi_{1-x}O_3$ solid solutions, **133**, 379 BaRuO₃ prepared at ambient pressure and possessing four-layer hexag- La_2IZ_2 (Z = Fe,Co,Ru,Os) condensed cluster phases, 129, 277 onal structure, refinement, 128, 251 La₆MgGe₂S₁₄, 131, 399 Ba₅Ru_{1.6}W_{0.4}Cl₂O₉ 10-layer perovskite-related oxyhalide, **132**, 407 La₆MgSi₂S₁₄, 131, 399 $Ba_2(RSb)O_6$ (R = Y,Ho) ordered perovskites suitable as substrates for La₃MoO₇, 129, 320 superconducting films, 128, 247 leucophosphite, 133, 508 LiKCO₃, neutron powder diffraction study, 128, 156 BaTl_{0.5}Sb_{0.5}O₃ ordered perovskite, letter to editor, **128**, 323 BiLa₂O_{4.5+ δ}, transformations, **131**, 64 Li₄Mn₅O₁₂, refinement with neutron and X-ray powder diffraction data, $Bi_{1-x}Ln_xO_{1.5}$ (*Ln* = Sm-Dy), ion-ordered phases, **129**, 98 130, 74 Bi_2O_3 -MoO₃-V₂O₅ system, **131**, 236 LiMnVO₄, ambient and high-pressure phases, 128, 267 $Bi_{2-x}Pb_xSr_{1.5}Ca_{1.5}Mn_2O_{9-\delta}$, 2212 structure, **132**, 420 Li₃Mo₃O₅(PO₄)₃ with bidimensional connection of MoO₆ octahedra, $Bi_{0.267}Pr_{0.733}SrO_{3-\delta}$, neutron diffraction study, 132, 182 133, 391 $Li_2Na(MoO)_2(PO_4)_3$, 129, 298 Bi₂Sn₂O₇ doped with Y, variations, 131, 317 Bi₁₂Sr₁₈Fe₁₀O₅₂, HREM study, **129**, 214 Li₄NCl, 128, 241 boron-doped LiCoO₂, 134, 265 Li₅NCl₂, ordered and disordered phases, **130**, 90 Li₂Pd₃B and Li₂Pt₃B with boron in octahedral position, 133, 21 boron thin films, 133, 100 $Me^{+}Br \cdot Me^{2} + Br_{2} \cdot 6H_{2}O (Me^{+} = K, NH_{4}, Rb; Me^{2} + Co, Ni), 129, 200$ LiSn₂(PO₄)₃, low-temperature triclinic distortion in, letter to editor, 130, R_4C_5 (R = Y,Gd,Tb,Dy,Ho), 132, 294 322 $Ca_8[Al_{12}O_{24}](MoO_4)_2$, 129, 130 $\text{Li}_3\text{Sr}_2M\text{N}_4 (M = \text{Nb},\text{Ta}), 130, 1$ CaBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115 Li_{0.74}Ti₃O₆, 129, 7 $Ca_{1-x}Eu_xMnO_3$ (0 $\leq x \leq$ 1) perovskites, **131**, 144 Mg_3N_2 , 132, 56 Ca(OD)₂ II prepared at high pressure, relationship to ZrO₂ and EuI₂ MgNb₂O₆ columbite, refinement from neutron powder diffraction data, structures, powder neutron diffraction study, 132, 267 **134.** 76 Ca₃ReO₆, **131**, 305 (Mg,Ni)₂(OH)(AsO₄), 132, 107 structures, powder neutron diffraction study, 132, 267 Ca_3ReO_6 , 131, 305 CaV_2O_5 , letter to editor, 127, 359; addendum, 129, 367 Cd_8As_7Cl : pnictidohalide with new structure type, 134, 282 $CeRu_4Sn_6$: condensed distorted $RuSn_6$ octahedra, 134, 326 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)]$, 128, 318 134, 76 $(Mg,Ni)_2(OH)(AsO_4)$, 132, 107 $Mg_3(PO_4)_2$, high-temperature and high-pressure phase, 129, 341 $A_{1-x}MnO_{3+y}$ (A = La,Eu), 130, 171 RMn_2O_5 (R = La,Pr,Nd,Sm,Eu), refinement, 129, 105 α -MnOOH and γ -MnOOH, 133, 486 Mn-Sn system: NiAs-Ni₂In-related structures, 129, 231 $Sr_4Mn_3(B_{1-x}Mn_x)O_{10}$ related to cubic perovskite structure, 134, 395 MoWO₃(PO₄)₂, **128**, 191 SrPrO₃ perovskite, 132, 337 NaCoPO₄ TeMo₅O₁₆ two-dimensional conductor, **129**, 303 polymorph with edge-sharing Co²⁺ octahedral chains, 131, 160 $Ti_4 TBi_2$ (T = Mn, Fe, Co, Ni), 133, 400with trigonal bipyramidal Co²⁺ and tunnel structure, **129**, 328 Ti₈Bi₉, 134, 26 Na₃Eu(CO₃)₃, 132, 33 $[Ti_2O(PO_4)_2(H_2O)_2]$, 132, 213 Na₃In₂(AsO₄)₃ and Na₃In₂(PO₄)₃, 131, 131 $[Ti_3(PO_4)_4(H_2O)_2] \cdot NH_3$, 132, 213 NaMoO₂AsO₄, 133, 386 Tl₅Ba₃Sr₅Cu₃O₁₉, 1201 shear like phase, **128**, 150 TlB₃O₅, **131**, 370 $Na_3M(OH)(HPO_4)(PO_4)$ (M = Al,Ga), 128, 21 $Na_xTa_3N_5 \ (0 \le x \le 1.4), 132, 394$ U₃Ga₂Ge₃, neutron powder diffraction study, 131, 72 Na₄[(TiO)₄(SiO₄)₃]·6H₂O: rhombohedrally distorted titanosilicate UGe, 129, 113 pharmacosiderite, 134, 409 $UXPO_4 \cdot 2H_2O$ (X = Cl,Br), powder X-ray diffraction study, 132, 315 $\delta - M_{0.25} V_2 O_5 \cdot H_2 O (M = Ca, Ni), 132, 323$ Na_{0.10}WO₃ bronze: distorted perovskite structure, **133**, 479 $N(CH_3)_4 \cdot Zn(H_2PO_4)_3$, molecular cluster, 131, 363 W₅As_{2.5}P_{1.5} with one-dimensional vertex-linked W₆ cluster, 131, 310 N(CH₃)₄·Zn(HPO₄)(H₂PO₄), open framework phase built up from WO₃ at high pressures, single-crystal diffraction studies, 132, 123 low-density 12-ring topology, 131, 363 ε-WO₃ with ferroelectric properties, 131, 9 $Nd(Cr_{1-x}Fe_x)O_3$, relationship to electrical properties, 131, 108 YB₂₅, 133, 122 [NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganic-YB₅₆ and YB₆₂ with YB₆₆-type structure, refinement, 133, 16 YBa₂Cu₃O_v single crystal, effect of oxygen introduction, 130, 42 organic layers, 132, 229 β -(NH₄)₂FeF₅, hydrogen bonding-induced NH₄⁺ ordering at low tem-YBO₃, 128, 261 $Y_{17.33}(BO_3)_4(B_2O_5)_2O_{16}$, **134**, 158 perature, 131, 189 $[NH_4]^+[(Sn_3O)_2(PO_4)_3]^-$, 134, 207 YB₄₁Si_{1.2}, 133, 11 YCoO₃, neutron diffraction study, 130, 192 $(NH_4)_2[(Ti_3O_2)(HPO_4)_2(PO_4)_2], 132, 213$ YFe₂D_{3.5}, distortion in, 133, 568 $(NH_4)_3V_2O_3(VO)(PO_4)_2(HPO_4)$ and NH_4VOPO_4 , 134, 286 NiCr₂S₄, powder neutron diffraction study, 134, 110 zirconolite-4M substituted with Nd, 129, 346 $Ni_{1+x}Fe_{2-2x/3}O_4$ (x = 0.30), **129**, 123 Zn(CN)₂, disordered structure, 134, 164 $Ln_5Os_3C_{4-x}$ (Ln = La-Nd,Sm), 131, 49 ZnO thin films, modification by Ni, Cu, and Cd doping, 128, 176 Zn₃O₂, 132, 56 oxynitrides in ZrO₂-rich part of Ca–Zr–O–N and Mg–Zr–O–N systems, **128.** 282 Zr₂Ni₂In, 128, 289 $M_2M'P$ (M = Zr,Hf; M' = Co,Ni), 131, 379 Zr₂Ni₂Sn, 128, 289 Pb₂BiO₂PO₄, **133**, 516 ZrO2, relationship to Ca(OD)2 II prepared at high pressure, powder PbFe_xV_{6-x}O₁₁ (1 \leq x \leq 1.75), R-type frustrated system, effects of Fe neutron diffraction study, 132, 267 β -Zr(OH)₂(NO₃)₂·H₂O, **128**, 295 substitution, 130, 223 (3PbO·PbSO₄·H₂O), 132, 173 α -Zr(OH)₂(NO₃)₂ · 1.65H₂O, **128,** 295 ZrV_2O_7 from -263 to $470^{\circ}C$, **132**, 355 MPd_3S_4 bronzes (M = La, Nd, Eu), 129, 1 $[PMo_{4,27}W_{7,73}O_{40}^{6-}][H_3N(CH_2)_6NH_3^{2+}]_3$, 129, 257 Czochralski technique Pr₂INi₂, Pr₄I₅Ni, and Pr₃I₃Os condensed cluster phases, **129**, 277 single VB₂ crystals grown by, microhardness, 133, 113 (Pr/La)Co(CN)₆·5H₂O mixed cationic systems, 129, 12 PtSi₂P₂ and PtSi₃P₂, 133, 473 Rb₂Cr₂O(AsO₄)₂, 134, 22 Rb_{0.62}Cr₅Te₈ pseudo-hollandite, 131, 326 1,10-Decanedicarboxylic acid Rb₅VONb₁₄O₃₈, **134**, 10 urea inclusion compound with, temperature-dependent structural prop-Rb₄YbI₆, 128, 66 erties, 128, 273 $RbZn_2(HPO_4)_2(H_2PO_4) \cdot 2H_2O$ and $RbZn(HPO_4)(H_2PO_4) \cdot H_2O$, 134, Decomposition in single crystals of K₂NiF₄-type aluminate LaCaAlO₄, X-ray diffraction RRh_2B_2C (R = rare earth), 133, 77 study, 134, 132 Rochelle salt, 131, 350 thermal, see Thermal decomposition RS-camphor at low temperature, 134, 211 Defect chemistry Ru complex sensitizers of TiO₂ anatase nanopowders, 132, 60 La_{2-x}Sr_xCuO_{4-δ}, oxygen nonstoichiometry and thermodynamic stabil-SbCrSe₃ 1D ferromagnet, HREM image analysis, 132, 257 ity, 131, 150 Sb_{0.16}WO₃ intergrowth tungsten bronze, **134**, 344 Defect energetics $R_{6+x/3}Si_{11}N_{20+x}O_{1-x}$ (R = Y and Gd-Lu), 129, 312 Ba₂In₂O₅ with Brownmillerite structure, computer simulation study, Sm₂ReO₅, 132, 196 **128,** 137 SmTh₂F₁₁, 130, 277 lanthanum magnesium hexaaluminate, 130, 199 $Ln_2Sn_2O_7$ (Ln = Y,La,Pr,Nd,Sm-Lu) pyrochlores, 130, 58 Defect structure Sn(O₃PCH₂CH₃) layered phase at room temperature, **132**, 438 $Ca_{1-x}La_xS$ (x = 0-0.3), **131**, 101 $La_{0.6}Sr_{0.4}Co_{1-y}Fe_yO_{3-\delta} \ \ (y=0\text{--}0.6), \ \ \, \text{high-temperature} \ \ \, \text{coulometric}$ $Sr_{1-x}Ba_xZrSe_3$ series, 130, 20 SrBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115 titration studies, 130, 302 (Sr,Ca)₄Cu₆O₁₀ three-leg-ladder compound, single-crystal X-ray diffraction studies, 134, 427 Ca(OD)₂ II prepared at high pressure, structure from powder neutron Sr₃Cu₂Fe₂O₅S₂, **134**, 128 diffraction, relationship to ZrO2 and EuI2 structures, 132, 267 $LiMnXO_4(OD)$ (X = P,As), magnetic structure, 132, 202 Sr_2CuMO_3S (M = Cr, Fe, In), 134, 128 $Sr_2Cu_2MO_2S_2$ (M = Mn,Zn), 130, 319 (ND₄)₂PdCl₆, antifluorite, phase analysis, 131, 221 Sr_3MgMO_6 (M = Pt,Ir,Rh), 130, 35 YFe₂D_{3.5}, X-ray and neutron powder diffraction studies, 133, 568 Diamond related stacking of octahedral units of antiprism, (H₃O)Yb₃F₁₀·H₂O prepared by chimie douce synthesis, **128**, 42 Diatomic crystals electro-optic coefficients, bond-charge calculation, 128, 17 Dielectric function boron-rich solids in FIR range, analysis on basis of optical reflectivity spectra, 133, 335 icosahedral boron-rich solids and icosahedral quasicrystals, 133, 160 Li- and V-doped β -rhombohedral boron, **133**, 152 α-rhombohedral boron, 133, 156 β -rhombohedral boron, 133, 129 Dielectric properties $Ba_{2-x}Sr_xDyTaO_6$ (x = 0,1,2), **133**, 522 $BaTiO_3$ -LaAlO₃ and $BaTiO_3$ -LaAlO₃-LaTi_{3/4}O₃ systems, **129**, 223 GaPO₄ thin films, **134**, 91 $(\text{LaMn}_{1-x}\text{Ti}_x)_{1-y}\text{O}_3 (x \le 0.05), 133, 466$ Dielectric resonators $Ba_{5-x}Sr_xNb_4O_{15}$ ceramics, vibrational analysis, 131, 2 1,4-Diethynylbenzene preferential formation of $C \equiv C - H \cdot \cdot \cdot \pi(C \equiv C)$ interactions in solid state, 134, 203 Diffuse reflectance spectroscopy (Mg,Ni)₂(OH)(AsO₄), 132, 107 Disorder cationic and anionic, metastable $LnTh_2F_{11}$ series with, synthesis and characterization, 130, 277 or order, in $A(B'B'')O_3$ perovskite compounds, simple method for judging, **134**, 420 translational, generated by oriented defects in Magneli phases, 131, 215 Dispersion capacity Mo^{6+} on α -Fe₂O₃ surface, **129**, 30 Doping electrochemical, with $M-\beta''$ -Al₂O₃ ionic conductors, 128, 93 LiCoO₂ with boron: structure and electrochemical properties study, **134**, 265 Double salts Me^+ Br· Me^{2+} Br₂·6H₂O (Me^+ = K,NH₄,Rb; Me^{2+} = Co,Ni), crystallization and structure, **129**, 200 Drude type transport and hopping type transport, superposition in boron-rich solids, **133**, 335 Dysprosium Al₅Dy₃O₁₂, cations arrays in garnet-type compounds, 128, 69 $Ba_{2-x}Sr_xDyTaO_6$ (x=0,1,2), development and dielectric properties, 133, 522 $\mathrm{Bi}_{1-x}\mathrm{Dy}_x\mathrm{O}_{1.5}$, ion-ordered phases, stability, thermal behavior, and crystal structure, **129**, 98 Bi–Dy–V–O anionic conductors with δ -Bi₂O₃ fluorite-type structure, 134, 219 DyB₄, polar and reticular microhardness anisotropy, 133, 296 DyB_6 , incongruently melting, single crystal growth and properties, 133, Dy₄C₅, crystal structure, 132, 294 $DyCuBaO_5$, Gibbs free energy of formation, determination by EMF method, 134, 85 $\mathrm{Dy_7O_6(BO_3)(PO_4)_2}$, X-ray powder diffraction and vibrational spectra studies, **129**, 45 DyRh₃B₂, single crystal growth from molten copper flux, 133, 82 DyRh₄B₄, single crystal growth from molten copper flux, 133, 82 DyRh₂B₂C, synthesis and characterization, 133, 77 $Dy_{6+x/3}Si_{11}N_{20+x}O_{1-x}$, preparation and crystal structure, **129**, 312 Dy₂Sn₂O₇, structural and bonding trends, **130**, 58 DyTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277 ${\rm Hg_2Ba_2DyCu_2O_{8-\delta}}$, synthesis and structural and magnetic characterization, 132, 163 Ε Editorial editorial appointment of Mercouri G. Kanatzidis and journal changes, 131, 1 Elastic constants higher order, titanium, 129, 53 Elastic waves propagating in different directions in Ti, generalized Gruneisen parameters for, 129, 53 Electrical conductivity AgTaS₃, 132, 389 boron and boron phosphide CVD wafers, 133, 314 Fe-doped β -rhombohedral boron, 133, 342 $(Fe_{0.8}W_{0.2})WN_2$, **131**, 374 $La_{2-x}Cd_xRu_2O_{7-\delta}$ pyrochlore oxides, **129**, 308 $(LaMn_{1-x}Ti_x)_{1-y}O_3 (x \le 0.05)$, 133, 466 $La_2NiO_{4+\delta}$, 131, 275 magnesium phthalocyanine thin films prepared by vacuum evaporation, 128, 27 NaO_{0.44}C_{5.84} graphite intercalation compound with sodium and peroxide, **131**, 282 MPd_3S_4 bronzes (M = La, Nd, Eu), 129, 1 $Sr_{3-x}A_xFe_2O_7$ ($x \le 0.4$; A = Ba,La), 130, 129 Ti_4TBi_2 (T = Fe,Co,Ni), 133, 400 $Zn_{2-x}Sn_{1-x}In_{2x}O_{4-\delta}$ spinel, **134**, 192 Electrical properties Aurivillius-related phases in Sb-(W,V)-O system, 128, 30 Ba₂Cu₃Cl₂O₄, **124**, 319; comment, **130**, 161 $Ba_4CuMO_4Cl_4$ (M = Li,Na), Cu(III) oxy-chlorides, letter to editor, 129, 360 $Bi_{1-x}Sr_xMnO_3$, **132**, 139 boron and boron phosphide films obtained by gas source molecular beam deposition, 133, 269 boron thin films, 133, 100 LiMn₂O₄- and Li₂MnO₃-type oxides, 131, 94 $A_4 \text{Mo}_{18} \text{O}_{32}$ (A = Ca,Y,Gd-Yb) with Mo_n (n = 2,4,6) cluster chains, 134, 45 Nd(Cr_{1-x}Fe_x)O₃, relationship to crystal structure, **131**, 108 Nd(Cr_{1-x}Ni_x)O₃, effect of spin state of Ni³⁺ ions, **134**, 382 PbFe_xV_{6-x}O₁₁ (1 \leq x \leq 1.75), *R*-type frustrated system, effects of Fe substitution, **130**, 223 $Pr_{2-x}M_xO_{4+\delta}$ (M = La,Sr), 131, 167 ε-WO₃, **131**, 9 ZnO thin films, modification by Ni, Cu, and Cd doping, 128, 176 Zr₂Ni₂In and Zr₂Ni₂Sn, **128**, 289 Electrical resistivity BaGe₂, **133**, 501 $Ln_3Cu_4P_4O_2$ (Ln = La,Ce,Nd), **129**, 250 $ACu_{7-x}S_4$ (A = Tl,K,Rb), anomalies, role of vacancy ordering, **134**, 5 FeNbO₄, **134**, 253 $In_2Ba_2CuO_{6-\delta}$ layered cuprate, **131**, 177 $(Mo_xCr_{1-x})AlB$ and $(Mo_xW_{1-x})AlB$, 133, 36 nanocrystalline borides and related compounds, 133, 249 Na₂Ti₂Sb₂O layered tetragonal compound, 134, 422 NbS₂-IrS₂ system, **129**, 242 $Nd(Cr_{1-x}Ni_x)O_3$, **134**, 382 NH₂CH=NH₂SnI₃ cubic perovskite and related systems, **134**, 376 PtSi₃P₂, **133**, 473 Pu_2T_2X (T = Co, Ir, Ni, Pd, Pt, Rh; X = In, Sn), 134, 138 Electrochemical deintercalation lithium in LiCr_yMn_{2-y}O₄ ($0 \le y \le 1$), structure modifications induced by, Rietveld analysis, **132**, 372 ``` Electrochemical doping Electronic structure with M-\beta''-Al_2O_3 ionic conductors, 128, 93 Am³⁺ in LiYF₄, 129, 189 Electrochemical intercalation B_9X_9 (X = Cl,Br,I), 133, 59 Li ions into polyparaphenylene in LiClO₄-carbonates electrolytes, 132, boron carbide and hexaborides, 133, 51 CaFe₂P₂ and CaNi₂P₂, first-principles study, 129, 147 Electrochemical properties Cu²⁺ polyhedra in trirutile-type compounds, 131, 263 Ag_{1,2}V₃O₈, 134, 294 force constant determination from, 133, 327 boron-doped LiCoO₂, 134, 265 KCu_{7-x}S₄, role of vacancy ordering, 134, 5 Electrolysis M_2M'P (M = Zr,Hf; M' = Co,Ni), 131, 379 doped rare earth manganate perovskite crystal synthesis with, letter to α-rhombohedral boron, electron energy-loss spectroscopic study, 133, editor, 130, 327 Electrolytes β-rhombohedral boron doped with Li and V, electron energy-loss spec- LiClO₄-carbonates, electrochemical intercalation of Li ions into poly- troscopic study, 133, 152 Zr₂Ni₂In and Zr₂Ni₂Sn, 128, 289 paraphenylene in, 132, 434 Electromechanical properties Electronic transitions PZT-type power ceramics, effect of fluoride introduction into anionic in tetrahedral oxo and hydroxo Cr(IV), Mn(V), and Fe(VI) clusters, sublattice, 130, 103 theoretical study, 128, 1 Electromotive force measurements Electron paramagnetic resonance Gibbs free energy of formation of LnCuBaO₅ (Ln = Yb,Tm,Er,Ho, cubic BN, effect of chemically active media, 133, 292 CuSb₂O₆ trirutile-type compounds, 131, 263 Dy,Gd), 134, 85 LiMn₂O₄ and Li₂MnO₃ coexisting phases, stoichiometry, 128, 80 thermodynamics of K_2U_4O_{12} and K_2U_4O_{13}, 132, 342 Electron density Li₈PrO₆ and Li₈TbO₆, 128, 228 Ag_{1.2}V₃O₈, 134, 294 (Mg,Ni)₂(OH)(AsO₄), 132, 107 Ca₃(Cr,Al)₂Si₃O₁₂ garnets, 132, 432 Pr⁴⁺ doped in Sr₂SnO₄ and Ba₂SnO₄, 130, 250 Z_3Ga_5O_{12} garnets (Z = Nd,Sm,Gd,Tb), 132, 300 Zn(Mg)_{1-x}Cu_xSb_2O_6 trirutile-type compounds, 131, 263 Y_3X_2Al_3O_{12} garnets (X = Al and (Al,Cr)), 134, 182 YBa₂Cu₃O_v single crystal, effect of oxygen introduction, 130, 42 optically excited, interaction with intraicosahedral phonons, 133, 125 Electron diffraction Electro-optic coefficients cristobalite-related phases in NaAlO₂-NaAlSiO₄ system, 131, 24 diatomic crystals, bond-charge calculation, 128, 17 Na_{0.10}WO₃ bronze with distorted perovskite structure, 133, 479 Energy characteristics Pb_{0.26}WO₃, 130, 176 superionics Li₄SiO₄ and Li₄GeO₄, 134, 232 Sb_{0.16}WO₃ intergrowth tungsten bronze, single-crystal studies, 134, 344 Enthalpy of formation YB₂₅, 133, 122 BaMo₂O₇(s), 134, 416 Electron doping binary compounds in Ru-Si, Ru-Ge, and Ru-Sn systems, 133, 439 Ca_{1-x}Sm_xMnO₃, analysis of CMR effect, 134, 198 NaMgF₃ perovskites, 132, 131 Electron energy-loss spectroscopy EPR, see Electron paramagnetic resonance electronic structure studies Erbium Li- and V-doped \beta-rhombohedral boron, 133, 152 Al₅Er₃O₁₂, cations arrays in garnet-type compounds, 128, 69 α-rhombohedral boron, 133, 156 Bi-Er-V-O anionic conductors with \delta-Bi₂O₃ fluorite-type structure, parallel EELS, Be-B-bearing materials, 133, 347 syntheses at high pressure and temperature in B-C-N-O system, 133, ErAlB₁₄, icosahedral solids, electronic properties, 133, 160 ErCuBaO₅, Gibbs free energy of formation, determination by EMF Electronic band structure method, 134, 85 La_{1-x}Sr_xCoO_{3-\delta}, effect on nonstoichiometry behavior, 133, 555 ErNi₂B₂C, superconducting and magnetic ordering temperatures, effects Rb_xCr₅Te₈ phases in Rb_{0.62}Cr₅Te₈ pseudo-hollandite, 131, 326 of Pd, Pt, and Co dopants, 133, 5 A_2Ru₂O_{7-y} (A = Bi,Pb,Tl,rare earth) pyrochlores, role in metallic and ErOOH, cation arrays, 131, 358 nonmetallic properties, letter to editor, 131, 405 Er-Rh-B system, single crystal growth from molten copper flux, 133, 82 \gamma-Ln_2S_3 (Ln = La, Ce, Pr, Nd), doped and undoped, LMTO-TB calcu- ErRh2B2C lations, 128, 197 single crystal growth from molten copper flux, 133, 82 ThCr₂Si₂-type transition metal compounds, LMTO band structure cal- synthesis and characterization, 133, 77 culations, 130, 254 \text{Er}_{6+x/3}\text{Si}_{11}\text{N}_{20+x}\text{O}_{1-x}, preparation and crystal structure, 129, 312 Er₂Sn₂O₇, structural and bonding trends, 130, 58 transition metal compounds of edge-sharing square planar units MX_4, ErTh₂F₁₁, metastable series with cationic and anionic disorder, syn- analysis, 128, 181 Electronic conductivity thesis and characterization, 130, 277 Ag_{1.92}Te at 160°C, 130, 140 Hg₂Ba₂ErCu₂O_{8-δ}, synthesis and structural and magnetic characteriza- Electronic properties tion, 132, 163 ESR, see Electron paramagnetic resonance icosahedral boron-rich solids and icosahedral quasicrystals, 133, 160 La₃MoO₇, 129, 320 Ethanol M_2M'P (M = Zr,Hf; M' = Co,Ni), 131, 379 cubic plastic phase, cluster model for, letter to editor, 130, 167 (Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta} and (R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta} nanocrystalline La_{1-x}Sr_xFeO₃ sensitivity to, effect of Sr content, 130, (R = Nd,Sm,Eu), 133, 445 Electronic state Ethoxide LaMnO_{3+\delta}, 130, 117 Mn_7Sb_4(\mu_5-O)_2(\mu_4-O)_2(\mu_3-OEt)_2(\mu-OEt)_{16}(HOEt)_2, synthesis and Sr_{3-x}A_xFe_2O_7 (x \le 0.4; A = Ba,La), 130, 129 structural analysis, 134, 312 ``` Ethylenediamine trimolybdate anhydrous, hydrothermal synthesis and crystal structure, letter to editor, 132, 224 Europium Bi_{1-x}Eu_xO_{1.5}, ion-ordered phases, stability, thermal behavior, and crystal structure. **129.** 98 Bi–Eu–V–O anionic conductors with δ -Bi₂O₃ fluorite-type structure, 134, 219 $Ca_{1-x}Eu_xMnO_3$ (0 $\le x \le 1$) perovskites, magnetic study, 131, 144 Cs₂KEuCl₆, crystal structure by powder x-ray diffraction, 132, 1 EuB₆, polar and reticular microhardness anisotropy, 133, 296 Eu₂Ba₄Cu₇O_{14+δ}, Pr-doped, high-pressure synthesis and characterization, **132**, 73 $EuB_{6-X}C_X$ ($X \approx 0.1$), FT Raman spectroscopy, **133**, 264 EuI₂, structure, relationship to structure of Ca(OD)₂ II prepared at high pressure, powder neutron diffraction study, **132**, 267 Eu_{1-x}MnO_{3+y}, orthomanganites with perovskite structure, magnetic study, **130**, 171 $EuMn_2O_5$, high-oxygen-pressure preparation, structural refinement, and thermal behavior, 129, 105 EuPd₃S₄ bronze, crystal structure and electrical conductivity, **129**, 1 $(Eu_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$, structural properties and oxygen stoichiometry, 133, 445 Eu₂Sn₂O₇, structural and bonding trends, 130, 58 EuTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277 ${\rm Hg_2Ba_2EuCu_2O_{8-\delta}}$, synthesis and structural and magnetic characterization, 132, 163 Na₃Eu(CO₃)₃, structural and optical studies, 132, 33 50Na₂O-49P₂O₅-0.5Eu₂O₃-0.5CeO₂: fluorescent photosensitive glass for optical memory and fluorescence holography, **134**, 362 Evaporation under vacuum, magnesium phthalocyanine thin films prepared by, electrical and optical characterization, **128**, 27 EXAFS, see Extended X-ray absorption fine structure Excitation spectroscopy laser selective, Am³⁺ in LiYF₄, **129**, 189 Excitons doping, in superconductivity, 129, 174 Extended X-ray absorption fine structure charge-discharge process in LiMn₂O₄, in situ study, letter to editor, 133, 586 CsTiSi₂O_{6.5}, 129, 206 F Ferroelectricity ε-WO₃, 131, 9 Ferromagnetism $Pr_{1-x}K_xMnO_3$ perovskites (x = 0-0.15), **132**, 98 Ferromagnets one-dimensional, SbCrSe₃, structure determination by HREM image analysis, **132**, 257 Films, see also Thin films boron and boron phosphide, obtained by gas source molecular beam deposition, preparation and electrical properties, 133, 269 B₁₂P₂, rhombohedral single crystalline films, epitaxial growth by chemical vapor deposition, 133, 104 Firing gels in synthesis of LaMnO_{3+ δ} using citric acid, **129**, 60 Flexural strength B₄C-C injection molded ceramics, 133, 68 Fluorescence spectroscopy Am³⁺ in LiYF₄, **129**, 189 Fluorescent photosensitive glass synthesis and characterization: material useful for optical memory and fluorescence holography, **134**, 362 Fluoride introduction into anionic sublattice of PZT-type power ceramics and effects on electromechanical properties, **130**, 103 Fluorine $Ba_2MM'F_7Cl(M,M'=Mn,Fe,Co,Ni,Zn)$, magnetic properties and neutron diffraction study, 131, 198 borosilicate glasses containing fluoride, OH absorption bands due to pyrohydrolysis in, removal, **130**, 330 CrZr_{0.75}Nb_{0.25}F₆, antiferrodistortive order in solid solution, **131**, 231 CuNbOF₅·4H₂O, infrared spectroscopy, **133**, 576 [Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], hydrothermal synthesis, crystal structure, and magnetic properties, **134**, 349 (H₃O)Yb₃F₁₀·H₂O, chimie douce synthesis and ab initio structure determination, **128**, 42 LiYF₄, Am³⁺ in, spectroscopic studies and crystal-field analysis, **129**, 189 NaMgF₃ perovskites, thermochemistry, 132, 131 β -(NH₄)₂FeF₅, hydrogen bonding-induced NH₄⁺ ordering at low temperature, structural and spectroscopic evidence, **131**, 189 SiF₄, structural relationship to CuAl₂, 132, 151; erratum, 134, 431 LnTh₂F₁₁ (Ln = La–Lu, Y), metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277 Fluorite-type structure δ -Bi₂O₃, Bi–Ln-V–O anionic conductors with (Ln = Y,Sm,Eu,Gd,Tb, Dy,Er,Yb), **134**, 219 Force constants determination by electronic structure, 133, 327 Formamidinium based cubic perovskite NH₂CH=NH₂SnI₃, and related systems, synthesis, resistivity, and thermal properties, **134**, 376 Formate CuCa₂(HCOO)₆, thermal decomposition, 132, 235 Fourier transform infrared spectroscopy arcaine sulfate, 133, 423 B₆O, 133, 260 boron-rich solids, FIR reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335 $Cd_3^{II}[(Fe^{III}/Co^{III})(CN)_6]_2 \cdot 14H_2O$, **129**, 17 Cu₂(OH)₃(CH₃COO)·H₂O, 131, 252 high-temperature phase formation in sol-gel aluminum titanate, 131, 181 $MIn(MoO_4)_2$ and $MIn(WO_4)_2$ (M = Li, Na, K, Cs), 129, 287 protonic mobility in brushite and monetite, 132, 6 sol-gel alumina doped with La and Ce, 128, 161 Fracture toughness B₄C-C injection molded ceramics, 133, 68 FTIR, see Fourier transform infrared spectroscopy Fused salt electrolysis doped rare earth manganate perovskite crystal synthesis with, letter to editor, 130, 327 G Gadolinium Al₅Gd₃O₁₂, cations arrays in garnet-type compounds, 128, 69 $Bi_{1-x}Gd_xO_{1.5}$, ion-ordered phases, stability, thermal behavior, and crystal structure, **129.** 98 Bi–Gd–V–O anionic conductors with δ -Bi₂O₃ fluorite-type structure, 134, 219 GdB₄, polar and reticular microhardness anisotropy, 133, 296 GdBa₂Cu₄O₈ superconductor, Sr substitution in, 128, 310 Gd₄C₅, crystal structure, 132, 294 GdCuBaO₅, Gibbs free energy of formation, determination by EMF method, **134**, 85 Gd₃Ga₅O₁₂ garnet, electron density study, 132, 300 ${\rm Gd_7O_6(BO_3)(PO_4)_2},$ X-ray powder diffraction and vibrational spectra studies, 129, 45 GdRh₃B, single crystal growth from molten copper flux, **133**, 82 GdRh₃B₂, single crystal growth from molten copper flux, **133**, 82 GdRh₂B₂C single crystal growth from molten copper flux, **133**, 82 synthesis and characterization, **133**, 77 $Gd_{6+x/3}Si_{11}N_{20+x}O_{1-x}$, preparation and crystal structure, **129**, 312 $Gd_2Sn_2O_7$, structural and bonding trends, **130**, 58 GdTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277 $(Gd-Yb)_4Mo_{18}O_{32}$, with Mo_n (n=2,4,6) cluster chains, anomalous metal–insulator transitions in, 134, 45 $Hg_2Ba_2GdYb_2O_{8-\delta}$, synthesis and structural and magnetic characterization, 132, 163 HGdTiO₄ and HGdTiO₄·xH₂O, structure and Raman spectra, 130, NaGdTiO₄ and Na₂Gd₂Ti₃O₁₀, structure and Raman spectra, **130**, 110 Gallium Ga(CN)₃, disordered crystal structure, **134**, 164 $Z_3Ga_5O_{12}$ garnets (Z = Nd,Sm,Gd,Tb), electron density study, 132, 300 GaOOH, cation arrays, 131, 358 GaPO₄ thin films, synthesis and dielectric properties, 134, 91 [Mg $_{0.174}$ Ga $_{0.256}$ (OH) $_2$](CO $_3$) $_{0.134}$ ···mH $_2$ O, synthesis, characterization, and 1 H and 71 Ga MAS NMR, 131, 78 Na₃Ga(OH)(HPO₄)(PO₄), synthesis and chain structure, 128, 21 U₃Ga₂Ge₃, nuclear and magnetic structure, neutron powder diffraction study, 131, 72 zinc blende crystals, atomic sizes in, linear electro-optic coefficient dependence on, 130, 54 ### Garnets $Al_5Ln_3O_{12}$ (Ln = Gd-Lu), cations arrays in, 128, 69 Ca₃(Cr,Al)₂Si₃O₁₂, electron density study, 132, 432 Z_3 Ga₅O₁₂ (Z = Nd,Sm,Gd,Tb), electron density study, **132**, 300 garnet–alluaudite polymorphism in NaCa₂ M_2^{2+} (AsO₄)₃ (M^{2+} = Mg,Ni, Co), cationic substitution effects, **131**, 290 synthetic, calculation of elementary cell parameter of, empirical formula for, **134**, 338 $Y_3X_2Al_3O_{12}$ (X = Al and (Al,Cr)), electron density study, 134, 182 Gas source molecular beam deposition preparation of boron and boron phosphide films by, 133, 269 Geminals chemical charge transfer in superconductivity, **129**, 174 Geometrical unit of polyhedra UGP, stacking, in description of complex structures, 128, 52 Germanium BaGe₂, synthesis, structure, and properties, 133, 501 $M_{10n-2}\text{Ge}_{3n+1}\text{O}_{16n}$ with M = (Co,Mg) or (Ni,Mg), structure, 130, 9 K₅In₅Ge₅As₁₄ and K₈In₈Ge₅As₁₇, layered materials, synthesis and crystal structure, **130**, 234 K_2ZnGeO_4 , α and β forms, crystal structures, 134, 59 La₆MgGe₂S₁₄, synthesis and structure, **131**, 399 Li₄GeO₄, superionic, vibrational spectra and energy characteristics, **134**, Ru-Ge systems, binary compounds in, heat capacity and heat content measurements, 133, 439 U₃Ga₂Ge₃, nuclear and magnetic structure, neutron powder diffraction study, 131, 72 UGe, crystal structure and magnetic behavior, 129, 113 ZrGeSb, and ZrSi_{0.7}Sb_{1.3} and ZrSn_{0.4}Sb_{1.6}: family containing ZrSiStype and β-ZrSb₂-type compounds, **134**, 388 Gibbs energy of formation molar, $BaMo_2O_7(s)$, using solid oxide galvanic cell method, 134, 416 Gibbs free energy LnCuBaO₅ (Ln = Yb,Tm,Er,Ho,Dy,Gd), determination by EMF method, **134**, 85 Glass borophosphate, electrically poled, second-harmonic generation, effects of introduction of niobium or sodium oxides, **133**, 529 fluorescent photosensitive, synthesis and characterization: material useful for optical memory and fluorescence holography, 134, 362 fluoride-containing borosilicates, OH absorption bands due to pyrohydrolysis in, removal, **130**, 330 ion-conducting, prepared by microwave melting, reversible color changes: structural implications, 131, 173 phosphate glasse with NASICON-type chemistry, synthesis using high microwave susceptibility of NaH₂PO₄·2H₂O, 132, 349 Sb₂S₃-As₂S₃-Tl₂S, ¹²¹Sb Mössbauer spectroscopy, **133**, 458 TeO₂-BaO-TiO₂, structural and nonlinear optical characterizations, 132, 411 ### Glycolates precursor for preparation of BaTiO₃ thin films, **131**, 43 ${ m Au}X_4$ ($X={ m O},{ m S},{ m Se}$), edge-sharing square planar units, transition metal compounds with, square planar to rectangular distortion in, 128, 181 ### Graphite NaO_{0.44}C_{5.84} intercalation compound with sodium and peroxide, 131, 282 #### Groutite hydrogen bonding and Jahn-Teller distortion in, **133**, 486 Gruneisen parameters generalized, for elastic waves propagating in different directions in Ti, 129. 53 Н # Hafnium Hf₈Bi₉, **134**, 26 Hf₂CoP, structure and characterization, 131, 379 Hf₂NiP, structure and characterization, 131, 379 HfW₂O₈, negative thermal expansion at high temperature, symmetric stretching vibrations of two-coordinate oxygen bridges in, letter to editor, 129, 160 ### Hardness B₄C-C injection molded ceramics, Knoop's hardness, 133, 68 $(Mo_xCr_{1-x})AlB$ and $(Mo_xW_{1-x})AlB$, Vickers microhardness, 133, 36 nanocrystalline borides and related compounds, 133, 249 tetra- and hexaborides of lanthanides and actinides, polar and reticular microhardness anisotropy, 133, 296 TiB₂ PVD coatings, microhardness, 133, 117 VB₂, microhardness of Czochralski-grown single crystals, **133**, 113 Heat capacity binary compounds in Ru-Si, Ru-Ge, and Ru-Sn systems, 133, 439 NaMgF₃ perovskites, 132, 131 Heat content binary compounds in Ru-Si, Ru-Ge, and Ru-Sn systems, 133, 439 Heavy fermion superconductors chemical bonding topology, 131, 394 Hexachlorobenzene self-propagating mechanochemical reaction with CaH₂, 129, 263 High-resolution electron microscopy Ba₆Mn₂₄O₄₈, **132**, 239 $Bi_{12}Sr_{18}Fe_{10}O_{52}$: collapsed structure related to 2212 structure, **129**, 214 $In_5Mo_{18}O_{28}$, **130**, 290 SbCrSe₃ 1D ferromagnet, image analysis, **132**, 257 Hole-doping effect ferromagnetic perovskite BiMnO₃, 132, 139 Holmium AlHoO₃, cation arrays in perovskite-type compounds, 128, 69 Al₅Ho₃O₁₂, cations arrays in garnet-type compounds, **128**, 69 Ba₂(HoSb)O₆, ordered perovskites suitable as substrates for superconducting films, characterization, **128**, 247 $Hg_2Ba_2HoCu_2O_{8-\delta}$ synthesis and structural and magnetic characterization, 132, 163 HoB₄, polar and reticular microhardness anisotropy, 133, 296 HoB₆, incongruently melting, single crystal growth and properties, 133, HoBa₂Cu₄O₈ superconductor, Sr substitution in, 128, 310 Ho₄C₅, crystal structure, 132, 294 HoCuBaO₅, Gibbs free energy of formation, determination by EMF method, **134**, 85 HoMnO₃, with metastable perovskite-type structure, synthesis, **129**, 334 HoOOH, cation arrays, **131**, 358 HoRh₂B₂C, synthesis and characterization, 133, 77 $Ho_{6+x/3}Si_{11}N_{20+x}O_{1-x}$, preparation and crystal structure, 129, 312 Ho₂Sn₂O₇, structural and bonding trends, 130, 58 HoTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277 Holography fluorescence, synthesis and characterization of fluorescent photosensitive glass useful for, **134**, 362 Hopping type transport and Drude type transport, superposition in boron-rich solids, **133**, 335 HREM, *see* High-resolution electron microscopy Humidity sensing characteristics of spinel zinc stannate thin films, 128, 305 Hydrogen $[Al_3P_4O_{16}]^{3-} \cdot 3[CH_3CH_2NH_3]^+$, nonaqueous synthesis and characterization, **129**, 37 anhydrous ethylenediamine trimolybdate, hydrothermal synthesis and crystal structure, letter to editor, **132**, 224 $B_{12}H_{12}$, icosahedral cluster simulating B_{12} cluster in β -rhombohedral boron, ground and excited states, 133, 178 CaH₂, self-propagating mechanochemical reaction with hexachlorobenzene, 129, 263 CaHPO₄ and CaHPO₄·2H₂O, protonic mobility in, IR spectroscopic and neutron scattering studies, 132, 6 $(CH_3NH_3)_2M(II)(SO_4)_2 \cdot 6H_2O$ (M(II) = Cu,Zn,Ni), IR and Raman spectra, 133, 407 C₂₉H₃₀N₅O₄S₂Ru, crystal structure, **132**, 60 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)]$, synthesis and characterization, 128, 318 Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)], two-dimensional solid with pillared layers, synthesis and structure, **132**, 144 CuCa₂(HCOO)₆, thermal decomposition, 132, 235 [Cu(II)(μ-3,5-dimethylpyrazolate)(μ-OH)], antiferromagnetic coupling, 132, 24 [Cu(II)(6-mercaptopurinolate²⁻)]_n, magnetic study, **132**, 78 Cu_xMn_{1-x}(HCOO)₂·2H₂O mixed crystals, thermal decomposition to copper-manganese oxides, **133**, 416 Cu₂(OH)₃(CH₃COO)· H₂O, preparation, characterization, and *ab initio* X-ray powder diffraction, **131**, 252 [Cu(II)(μ -pyrazolate)(μ -OH)], antiferromagnetic coupling, 132, 24 $[Fe_3(PO_4)_3F_2,\ (CH_3NH_3)_2,\ H_2O],\ hydrothermal\ synthesis,\ crystal\ structure,\ and\ magnetic\ properties,\ 134,\ 349$ (H₃O)Yb₃F₁₀·H₂O, chimie douce synthesis and ab initio structure determination, **128**, 42 $HLnTiO_4$ and $HLnTiO_4 \cdot xH_2O$ (Ln = La,Nd,Sm,Gd), structure and Raman spectra, 130, 110 $H_xV_2Zr_2O_9 \cdot H_2O$ (x=0.43), hydrothermal synthesis and characterization, **128**, 313 $H_2WO_4 \cdot nH_2O$ surfaces, transformation of ultrafine rutile particles to anatase at, letter to editor, 132, 447 hydrides of rare earth transition metal borides, low-temperature synthesis, **133**, 145 insertion into blue potassium molybdenum bronze, 128, 256 KAl(HPO₄)₂·H₂O, X-ray diffraction, neutron scattering, and solid-state NMR, 132, 47 KNa(C₄H₄O₆)·4H₂O, structure, 131, 350 $K/V/P/N(C_2H_5)_3/H_2O$ and $NH_4/V/P/H_2O$ hydrothermal systems, analysis at 473 K, 134, 286 4-methylbenzeneamine, solid-solid reactions with CuCl₂·2H₂O, CoCl₂·6H₂O, and NiCl₂·6H₂O, **132**, 291 α -MnOOH and γ -MnOOH, hydrogen bonding and Jahn-Teller distortion in, 133, 486 $Mn_7Sb_4(\mu_5-O)_2(\mu_4-O)_2(\mu_3-OEt)_2(\mu-OEt)_{16}(HOEt)_2$, synthesis and structural analysis, **134**, 312 NaH₂PO₄·2H₂O, high microwave susceptibility: synthesis of crystalline and glassy phosphates with NASICON-type chemistry, **132**, 349 $Na_3M(OH)(HPO_4)(PO_4)$ (M = Al,Ga), synthesis and chain structure, 128, 21 N(CH₃)₄·Zn(H₂PO₄)₃, molecular cluster, synthesis and crystal structure, 131, 363 N(CH₃)₄·Zn(HPO₄)(H₂PO₄), open framework phase built up from low-density 12-ring topology, synthesis and crystal structure, **131**, 363 NH₂CH=NH₂SnI₃ cubic perovskite and related systems, synthesis, resistivity, and thermal properties, **134**, 376 [NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganicorganic layers, synthesis and characterization, **132**, 229 $(NH_4)_2[(Ti_3O_2)(HPO_4)_2(PO_4)_2]$, synthesis and X-ray powder structure, 132, 213 NH₄/V/P/H₂O and K/V/P/N(C₂H₅)₃/H₂O hydrothermal vanadium phosphate systems, analysis at 473 K, and crystal structures of NH₄VOPO₄ and (NH₄)₃V₂O₃(VO)(PO₄)₂(HPO₄), **134**, 286 [PMo $_{4.27}W_{7.73}O_{40}^{6-}$][H $_3$ N(CH $_2$) $_6$ NH $_3^{2+}$] $_3$, hydrothermal synthesis and structure, **129**, 257 RbZn₂(HPO₄)₂(H₂PO₄)· 2H₂O and RbZn(HPO₄)(H₂PO₄)· H₂O, syntheses and crystal structures, **134**, 148 Sn(O₃PCH₂CH₃) layered phase, room-temperature synthesis and structural characterization, **132**, 438 [Ti₃(PO₄)₄(H₂O)₂]·NH₃, synthesis and X-ray powder structure, 132, α -Zr(HPO₄)₂·H₂O large crystals, thermoanalytical study, phase transitions, and dimensional changes, 132, 17 Hydrogen bonding in groutite and manganite, 133, 486 induced NH₄⁺ ordering in β -(NH₄)₂FeF₅ at low temperature, structural and spectroscopic evidence, **131**, 189 in KAl(HPO₄)₂·H₂O, **132**, 47 in leucophosphite, 133, 508 preferential formation of C \equiv C $-H \cdot \cdot \cdot \pi$ (C \equiv C) interactions in solid state, **134**, 203 Hydrogen sulfide effects on chemical behavior of Sn dopant atoms on surface of $\rm Cr_2O_3$ microcrystals upon exposure to ambient atmosphere, 132, 284 Hydrolysis pyrohydrolysis in fluoride-containing borosilicate glasses, OH absorption bands due to, removal, 130, 330 Hydrotalcite related compounds, Mg-Fe catalysts prepared from, surface acid/base properties, microcalorimetric studies, 128, 73 related phase, existence in absence of trivalent cations, 128, 38 Hydrothermal synthesis anhydrous ethylenediamine trimolybdate, letter to editor, 132, 224 Ba(CoPO₄)₂·H₂O, lamellar hydrated phosphate with two-dimensional array of Co-O-Co network, **131**, 387 [Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], **134**, 349 $H_xV_2Zr_2O_9 \cdot H_2O$ (x = 0.43), **128**, 313 Na₃In₂(AsO₄)₃ and Na₃In₂(PO₄)₃, 131, 131 Na₄[(TiO)₄(SiO₄)₃]·6H₂O: rhombohedrally distorted titanosilicate pharmacosiderite, **134**, 409 $[PMo_{4.27}W_{7.73}O_{40}^{6-}][H_3N(CH_2)_6NH_3^{2+}]_3$, 129, 257 Sn- and Ti-doped α-Fe₂O₃ prepared by, structural characterization, **130**, Hydrothermal vanadium phosphate systems $NH_4/V/P/H_2O$ and $K/V/P/N(C_2H_5)_3/H_2O$, analysis at 473 K, and crystal structures of NH_4VOPO_4 and $(NH_4)_3V_2O_3(VO)(PO_4)_2(HPO_4)$, 134, 286 Hydroxide absorption bands due to pyrohydrolysis in fluoride-containing borosilicate glasses, removal, **130**, 330 Ca(OD)₂ II prepared at high pressure, structure from powder neutron diffraction, relationship to ZrO₂ and EuI₂ structures, **132**, 267 Ca(OH)₂, incipient reaction with SiO₂ under moderate mechanical stressing, mechanisms: changes in short-range ordering, **130**, 284 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)]$, synthesis and characterization, 128, 318 Co(II) α-hydroxide, hydrotalcite-like phase, 128, 38 Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)], two-dimensional solid with pillared layers, synthesis and structure, **132**, 144 [Cu(II)(μ -3,5-dimethylpyrazolate)(μ -OH)], antiferromagnetic coupling, 132, 24 Cu₂(OH)₃(CH₃COO)· H₂O, preparation, characterization, and *ab initio* X-ray powder diffraction, **131**, 252 [Cu(II)(μ-pyrazolate)(μ-OH)], antiferromagnetic coupling, 132, 24 $K[Fe_2(PO_4)_2(OH)(H_2O)] \cdot H_2O$, hydrogen bonding and structural relationships, 133, 508 [Mg $_{0.174}$ Ga $_{0.256}$ (OH) $_2$](CO $_3$) $_{0.134}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ synthesis, characterization, and 1 1 $^{\prime}$ (Mg,Ni)₂(OH)(AsO₄), structural and spectroscopic studies, **132**, 107 Na₃M(OH)(HPO₄)(PO₄) (M = Al,Ga), synthesis and chain structure, **128**, 21 [NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganicorganic layers, synthesis and characterization, **132**, 229 Ni(II) α-hydroxide, hydrotalcite-like phase, 128, 38 [Zn-Cr-SO₄] lamellar double hydroxides, selective synthesis, 130, 66 β-Zr(OH)₂(NO₃)₂·H₂O, structural analysis by X-ray powder diffraction. **128.** 295 α-Zr(OH)₂(NO₃)₂·1.65H₂O, structural analysis by X-ray powder diffraction, 128, 295 - 1 Image analysis HREM of SbCrSe₃ 1D ferromagnet, 132, 257 Impedance spectroscopy state of boron atoms in amorphous metallic matrix, 133, 273 Inclusion compounds 1,10-decanedicarboxylic acid/urea, temperature-dependent structural properties, **128**, 273 Incorporation model dispersion capacity and coordination environment of Mo^{6+} on α -Fe₂O₃ surface, **129**, 30 Indium Ba₂In₂O₅, Brownmillerite-structured, computer simulation study, **128**, 137 An_2T_2 In (An = Pu,Am; T = Co,Ir,Ni,Pd,Pt,Rh), synthesis, crystal chemistry, and physical properties, **134**, 138 In₂Ba₂CuO_{6-δ}, layered cuprate, synthesis and characterization, **131**, 177 In₁₆Fe₈S₃₂ spinel, chemically lithiated, structural and local environment modifications, **134**, 238 $MIn(MoO_4)_2$ and $MIn(WO_4)_2$ (M=Li,Na,K,Cs), vibrational characteristics, 129, 287 In₅Mo₁₈O₂₈, HREM studies on real structure, **130**, 290 InOOH, cation arrays, 131, 358 K₅In₅Ge₅As₁₄ and K₈In₈Ge₅As₁₇, layered materials, synthesis and crystal structure, 130, 234 $Na_3In_2(AsO_4)_3$ alluaudite-like structure, 134, 31 hydrothermal synthesis and structures, 131, 131 Na₃In₂(PO₄)₃, hydrothermal synthesis and structures, 131, 131 NiAs-Ni₂In, related structures in Mn-Sn system, 129, 231 Sr₂CuInO₃S, crystal structure, **134**, 128 zinc blende crystals, atomic sizes in, linear electro-optic coefficient dependence on, 130, 54 $Zn_{2-x}Sn_{1-x}In_{2x}O_{4-\delta}$ spinel, transparent conducting properties, 134, Zr₂Ni₂In, structure and properties, 128, 289 Infrared spectroscopy, see also Fourier transform infrared spectroscopy active phonon spectra of B-C-Al compounds with boron carbide structure, 133, 254 $Ba_{5-x}Sr_xNb_4O_{15}$ microwave dielectric ceramic resonators, 131, 2 $Ca_3(P_5O_{14})_2$, 129, 196 $(CH_3NH_3)_2M(II)(SO_4)_2 \cdot 6H_2O (M(II) = Cu,Zn,Ni), 133, 407$ CuNbOF₅·4H₂O, **133**, 576 $M_3 \text{Fe}_2(\text{SeO}_3)_6 \cdot 2\text{H}_2\text{O} \ (M = \text{Mg,Co,Ni}), 131, 54$ (Mg,Ni)₂(OH)(AsO₄), 132, 107 $Na_2Cu(SO_4)_2 \cdot 2H_2O$, 133, 407 $Ln_7O_6(BO_3)(PO_4)_2$ (Ln = La,Nd,Gd,Dy), **129**, 45 OH absorption bands due to pyrohydrolysis in fluoride-containing borosilicate glasses, removal, **130**, 330 TeO₂-BaO-TiO₂ glasses, 132, 411 Insulator-metal transition Pr_{0.5}Ca_{0.5}MnO₃, induction by Cr and Co doping, letter to editor, 130, 162 $Sr_{3-x}A_xFe_2O_7$ ($x \le 0.4$; A = Ba,La), 130, 129 Interband transitions $B_{12}P_2$ doped with Si, 133, 140 icosahedral boron-rich solids, critical points in, 133, 132 Internal friction B₄C, B₉C, and B₁₃C₂, **133**, 44 Iodin AgI-Ag₂O-B₂O₃-SiO₂ system, reversible color changes in ion-conducting glasses prepared by microwave melting: structural implications, 131, 173 B_9I_9 , synthesis, crystal structure, and electronic structure, 133, 59 Cs₃Sb₂I₉, reconstructive phase transformation and kinetics by means of Rietveld analysis of X-ray diffraction and ¹²⁷I NQR, **134**, 319 EuI₂, structure, relationship to structure of Ca(OD)₂ II prepared at high pressure, powder neutron diffraction study, **132**, 267 $\text{La}_2\text{I}Z_2$ (Z=Fe,Co,Ru,Os), $\text{Pr}_4\text{I}_5\text{Ni}$, $\text{Pr}_3\text{I}_3\text{Os}$, and Pr_2INi_2 , condensed cluster phases, 129, 277 NH₂CH=NH₂SnI₃ cubic perovskite and related systems, synthesis, resistivity, and thermal properties, **134**, 376 Rb₄YbI₆, synthesis and crystal structure, **128**, 66 Ion-conducting glasses prepared by microwave melting, reversible color changes: structural implications, 131, 173 Ion exchange $Ni_{1+x}Fe_{2-2x/3}O_4$ preparation from α -NaFeO₂, 129, 123 Ionic conductivity $Ag_{1.92}$ Te at 160° C, **130**, 140 Ag₂VP₂O₈, 130, 28 Iridium $An_2\operatorname{Ir}_2X$ ($An = \operatorname{Pu,Am}$; $X = \operatorname{In,Sn}$), synthesis, crystal chemistry, and physical properties, **134**, 138 IrSi₃P₃, Raman study, 128, 142 NbS₂-IrS₂ system, 1T structure stability, 129, 242 Sr₃MgIrO₆, synthesis, crystal structure, and magnetic properties, **130**, 35 fron Ba₆Cu₁₂Fe₁₃S₂₇, synthesis and crystal structure, **128**, 62 Ba₂FeM'F₇Cl (M' = Mn,Fe,Co,Ni), magnetic properties and neutron diffraction study, **131**, 198 BaFe₂O₄ and BaFe₁₂O₁₉ particles, synthesis with combustion method, 134, 227 $Bi_{12}Sr_{18}Fe_{10}O_{52}$, HREM study: collapsed structure related to 2212 structure, **129**, 214 CaFe₂P₂, electronic structure and chemical bonding, first-principles study, 129, 147 $Cd_3^{II}[(Fe^{II}/Co^{II})(CN)_6]_2 \cdot 14H_2O$, X-ray diffraction and spectral studies, 129, 17 Cu₂Fe(CN)₆, interaction with silver ions in solution, 132, 399 FeB₂₉, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335 $FeNbO_4$, electrical resistivity, thermopower, and ^{57}Fe Mössbauer study, 134, 253 α-Fe₂O₃ aciculate ultrafine particles, kinetics of reduction to Fe_3O_4 particles, 134, 248 interaction with MoO₃, 129, 30 Sn- and Ti-doped, hydrothermally prepared, structural characterization, 130, 272 Fe₃O₄ kinetics of reduction of α -Fe₂O₃ aciculate ultrafine particles to, **134**, 248 thin film synthesis via sol-gel method, characterization, and magnetic properties, **128**, 87 [Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], hydrothermal synthesis, crystal structure, and magnetic properties, **134**, 349 M_3 Fe₂(SeO₃)₆· 2H₂O (M = Mg,Co,Ni), synthesis, crystal structure, and IR and Mössbauer spectroscopy, **131**, 54 Fe₄W₂N, with unique η -carbide structure, synthesis, **134**, 302 $(Fe_{0.8}W_{0.2})WN_2$, synthesis and characterization, 131, 374 $\rm In_{16}Fe_8S_{32}$ spinel, chemically lithiated, structural and local environment modifications, 134, 238 iron zircon pigments, synthesis by pyrolysis of aerosols, 128, 102 $K[Fe_2(PO_4)_2(OH)(H_2O)] \cdot H_2O$, hydrogen bonding and structural relationships, 133, 508 $LaFe_xNi_{1-x}O_3$ solid solutions, crystal structure refinement and stability, 133, 379 La₂IFe₂, condensed cluster phase, 129, 277 $La_{0.6}Sr_{0.4}Co_{1-y}Fe_yO_{3-\delta}$ (y = 0–0.6), thermodynamic quantities and defect structure, high-temperature coulometric titration studies, **130**, 302 $La_{2-x}Sr_{2x}Cu_{1-x}Fe_xO_4$, linear Cu–O–Fe electronic interaction in two dimensions, 128, 169 $La_{1-x}Sr_xFeO_3$, nanocrystalline material sensitivity to ethanol, effect of Sr content, 130, 152 $\text{Li}_2\text{Fe}_2(\text{MoO}_4)_3$, weak ferromagnetic ground state structure, **130**, 147 Li_3FeN_2 , microwave synthesis, **130**, 266 Li₂O-TiO₂-Fe₂O₃ ordered spinels, cation distribution, **134**, 170 Mg-Fe catalysts prepared from hydrotalcite-like precursors, surface acid/base properties, microcalorimetric studies, **128**, 73 $\alpha\text{-NaFeO}_2, \text{Ni}_{1+x}\text{Fe}_{2-2x/3}\text{O}_4$ obtained from, crystal and magnetic structures, **129**, 123 Na_{0.875}Fe_{0.875}Ti_{1.125}O₄, topotactic oxidation of quadruple-rutile-type chain structure, **130**, 184 $Nd(Cr_{1-x}Fe_x)O_3$, relationship of crystal structure and electrical properties, 131, 108 β-(NH₄)₂FeF₅, hydrogen bonding-induced NH₄⁺ ordering at low temperature, structural and spectroscopic evidence, **131**, 189 Ni-6 mass% B-58.6 mass% Mo-10 mass% Fe, high-strength boride base hard materials, 133, 243 $Ni_{1+x}Fe_{2-2x/3}O_4$ (x = 0.30), obtained by ionic exchange from α -NaFeO₂, crystal and magnetic structures, **129**, 123 PbFe_xV_{6-x}O₁₁ ($1 \le x \le 1.75$), *R*-type frustrated system, Fe substitution effects on structural, electric, and magnetic properties, **130**, 223 β -rhombohedral boron doped with electronic properties of icosahedral solids, 133, 160 Mössbauer spectroscopy and electrical conductivity, 133, 342 $\mathrm{Sr}_{10-n/2}\mathrm{Bi}_n\mathrm{Fe}_{20}\mathrm{O}_m$ (n=4,6,8,10), with high oxygen permeability, synthesis, 130, 316 Sr₂CuFeO₃S, crystal structure, 134, 128 Sr₃Cu₂Fe₂O₅S₂, crystal structure, **134**, 128 $Sr_{3-x}A_xFe_2O_7$ ($x \le 0.4$; A = Ba,La), electronic state, magnetism, and electrical transport behavior, **130**, 129 tetrahedral oxo and hydroxo Fe(VI) clusters, valence stabilization, mixed crystal chemistry, and electronic transitions, 128, 1 Ti₄FeBi₂, preparation and properties, 133, 400 $(Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}$ (0 $\leq x \leq$ 2) with Tl-2212-type structure, preparation and characterization, **132**, 308 YFe₂D_{3.5}, X-ray and neutron powder diffraction studies, **133**, 568 J Jahn-Teller effect contribution to negative force constants, **133**, 327 cooperative induction of antiferrodistortive order in $CrZr_{0.75}Nb_{0.25}F_6$ solid solution, 131, 231 in Raman spectra of $Ba_2Cu_xZn_{1-x}WO_6$ mixed crystals, **129**, 117 CuNbOF₅ · 4H₂O, first- and second-order, **133**, 576 distortion in groutite and manganite, 133, 486 involving geminals and for degenerate vibronic states, 129, 174 $LiMnXO_4(OD)$ (X = P,As) after chimie douce reactions, 132, 202 role in electrical transport in semiconducting (LaMn1-xTix)1-yO3 (x \leq 0.05), 133, 466 vibronic coupling in trirutile-type compounds, 131, 263 Κ Kinetics $Cs_3Sb_2I_9$ reconstructive phase transformation: Rietveld analysis of X-ray diffraction and ^{127}I NQR, 134, 319 reduction of $\alpha\text{-Fe}_2\mathrm{O}_3$ aciculate ultrafine particles to Fe $_3\mathrm{O}_4,\,134,\,248$ L Ladder compound $(Sr,Ca)_4Cu_6O_{10},$ X-ray single-crystal structure analysis, 134, 427 Lanthanum AlLaO₃, cation arrays in perovskite-type compounds, 128, 69 BaTiO₃-LaAlO₃ and BaTiO₃-LaAlO₃-LaTi_{3/4}O₃ systems, chemical reactions and dielectric properties, **129**, 223 BiLa₂O_{4.5+ δ}, structural transformations, **131**, 64 $Ca_{1-x}La_xS$ (x = 0–0.3), structural and luminescence properties, **131**, 101 HLaTiO₄ and HLaTiO₄ · xH_2O , structure and Raman spectra, **130**, 110 LaB₆ crystal preparation from Al flux using compound precursors, thermodynamic analysis, 133, 237 electronic structure calculations, **133**, 51 FT Raman spectroscopy, **133**, 264 in thin film technology, **133**, 279 La₁₅B₁₄C₁₉, bonding analysis, **133**, 190 LaCaAlO₄, K₂NiF₄-type aluminate single crystals, decomposition processes in, X-ray diffraction study, 134, 132 $La_{1-x}Ca_xN_{1-x/3}$ (0 < x < 0.7), defect rock salt nitrides prepared from LaN and Ca_3N_2 , 129, 144 La_{2-x}Cd_xRu₂O_{7-δ}, pyrochlore oxides, synthesis and characterization, **129.** 308 $LaCuO_{3-y}$ (0 $\le y \le 0.5$), copper valence and properties, control by oxygen content adjustment, **130**, 213 La₂CuO_{4+δ}, electrochemically oxidized particles prepared by sol–gel method, structural characterization, **131**, 246 La₃Cu₄P₄O₂, synthesis, crystal structure, and properties, 129, 250 La₂Cu(SeO₃)₄, synthesis and crystal structure, 133, 572 $LaFe_xNi_{1-x}O_3$ solid solutions, crystal structure refinement and stability, 133, 379 La_2IZ_2 (Z = Fe,Co,Ru,Os), condensed cluster phases, 129, 277 La₆MgGe₂S₁₄, synthesis and structure, 131, 399 La₆MgSi₂S₁₄, synthesis and structure, 131, 399 La_{1-x}MnO_{3+y}, orthomanganites with perovskite structure, magnetic study, **130**, 171 LaMnO_{3+ δ} synthesis by firing gels using citric acid, 129, 60 transition from polaronic to itinerant behavior of Mn *e* electrons, **130**, LaMn₂O₅, high-oxygen-pressure preparation, structural refinement, and thermal behavior, **129**, 105 $(\text{LaMn}_{1-x}\text{Ti}_x)_{1-y}\text{O}_3$ ($x \le 0.05$), electrical transport in, 133, 466 La₃MoO₇, structure and electronic and thermal properties, **129**, 320 LaN, solid solutions with Ca_3N_2 , formation of defect rock salt nitrides $La_{1-x}Ca_xN_{1-x/3}$, 129, 144 LaNi₅ particles, adsorption characteristics, **134**, 67 $La_2NiO_{4+\delta}$, metal-semiconductor transition, 131, 275 LaNi_{1-x}W_xO₃ ($0 \le x \le 0.25$) perovskites, magnetic properties, **134**, 274 lanthanum magnesium hexaaluminate, defect energetics and non-stoichiometry, **130**, 199 lanthanum molybdates with La:Mo ratio of 1:1, direct synthesis by high-energy ball milling, letter to editor, 132, 443 La₇O₆(BO₃)(PO₄)₂, X-ray powder diffraction and vibrational spectra studies, 129, 45 La_2O_3 –Co– Co_2O_3 system, thermogravimetric study at 1100 and 1150°C, **131**, 18 LaOOH, cation arrays, 131, 358 La₅Os₃C_{4-x}, preparation and crystal structure, **131**, 49 LaPd₃S₄ bronze, crystal structure and electrical conductivity, 129, 1 LaRh₂B₂C, synthesis and characterization, 133, 77 γ -La₂S₃, doped and undoped, band electronic structure study through LMTO-TB calculations, **128**, 197 $\text{La}_{1-x}\text{Sm}_x\text{TiO}_3$ (0 $\leq x \leq$ 1), magnetic and structural studies, letter to editor, **133**, 583 La₂Sn₂O₇, structural and bonding trends, 130, 58 La_{0.6}Sr_{0.4}Co_{1-y}Fe_yO_{3- δ} (y=0-0.6), thermodynamic quantities and defect structure, high-temperature coulometric titration studies, **130**, 302 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$, Coulometric titration at high temperature: electronic band structure effect on nonstoichiometry behavior, **133**, 555 La_{2-x}Sr_xCuO_{4-δ}, defect chemistry: oxygen nonstoichiometry and thermodynamic stability, **131**, 150 $\text{La}_{2-x}\text{Sr}_{2x}\text{Cu}_{1-x}M_x\text{O}_4$ (M=Ti,Mn,Fe,Ru), linear Cu–O–M electronic interaction in two dimensions, **128**, 169 La_{1-x}Sr_xFeO₃, nanocrystalline material sensitivity to ethanol, effect of Sr content, **130**, 152 La-Sr-Mn-O system, phase equilibria, 134, 38 LaTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277 NaLaTiO₄ and Na₂La₂Ti₃O₁₀, structure and Raman spectra, **130**, 110 (Pr/La)Co(CN)₆·5H₂O, mixed cationic systems, synthesis and crystal structure, **129**, 12 $Pr_{2-x}La_xNiO_{4+\delta}$, oxygenation and electrical properties, 131, 167 sol-gel alumina doped with, X-ray diffraction, FTIR, and NMR studies, **128,** 161 $Sr_{3-x}La_xFe_2O_7$ ($x \le 0.4$), electronic state, magnetism, and electrical transport behavior, **130**, 129 Lattice constant synthetic oxides-garnets, empirical formula for calculation of, 134, 338 Lattice dynamics boron-rich crystals, rotation-induced relaxation mechanism for strains, 133, 322 boron-rich solids, central and noncentral forces on, 133, 215 negative force constants and determination of force constants by electronic structure, **133**, 327 Lattice energy BaGe₂, **133**, 501 Lattice parameters YBa₂Cu₃O_{6+x}, orthorhombic, dependence on oxygen content, 134, Lattice vibrations B₄C and B₉C, 133, 44 B₁₃C₂, **133**, 44, 93 Laves phase KAg₂, high-pressure synthesis, **130**, 311 Lead $Bi_{2-x}Pb_xSr_{1.5}Ca_{1.5}Mn_2O_{9-\delta}$ with 2212 structure, synthesis and crystal chemistry, 132, 420 Pb₂BiO₂PO₄, crystal structure, 133, 516 PbFe_xV_{6-x}O₁₁ ($1 \le x \le 1.75$), *R*-type frustrated system, Fe substitution effects on structural, electric, and magnetic properties, **130**, 223 (3PbO·PbSO₄·H₂O), crystal structure, 132, 173 Pb₂Ru₂O_{7-y} pyrochlores, metallic and nonmetallic properties, structural and electronic factors in, letter to editor, **131**, 405 Pb₂Sr₂Cu₂TaO₈Cl, layered cuprate with hematophanite structure, synthesis and characterization, **130**, 154 Pb_{0.26}WO₃ bronze, X-ray and electron diffraction study, 130, 176 $Pb_2(M_{1.5}W_{0.5})O_{6.5}$ (M = Ti,Sn), defect pyrochlores, surface segregation and oxygen vacancy ordering, **130**, 81 Leucophosphite hydrogen bonding and structural relationships, 133, 508 Linear electro-optic coefficient zinc blende crystals, dependence on difference in atomic sizes, 130, 54 Lithium Ba₄CuLiO₄Cl₄, Cu(III) oxy-chloride, synthesis, structure, and electrical and magnetic properties, letter to editor, **129**, 360 Li₃AlN₂, microwave synthesis, 130, 266 LiClO₄-carbonates electrolytes, electrochemical intercalation of Li ions into polyparaphenylene in, **132**, 434 LiCoO₂, boron-doped, structure and electrochemical properties, 134, 265 $\text{LiCr}_y \text{Mn}_{2-y} \text{O}_4$ ($0 \le y \le 1$), structure modifications induced by electrochemical Li deintercalation, Rietveld analysis, **132**, 372 Li₃Cu₂SbO₆ with partially ordered rock salt structure, synthesis, 131, Li₂Fe₂(MoO₄)₃, weak ferromagnetic ground state structure, **130**, 147 Li₃FeN₂, microwave synthesis, **130**, 266 Li₄GeO₄ and Li₄SiO₄ superionics, vibrational spectra and energy characteristics, 134, 232 LiIn(MoO₄)₂ and LiIn(WO₄)₂, vibrational characteristics, **129**, 287 LiKCO₃, crystal structure, neutron powder diffraction study, 128, 156 LiMnO₂, orthorhombic crystals, long-range and short-range magnetic order, 128, 209 LiMn₂O₄, spinel-type oxides charge–discharge process, *in situ* XAFS study, letter to editor, **133**, 586 electric and magnetic properties, **131**, 94 and Li₂MnO₃, stoichiometry of coexisting phases, XRD and EPR studies, 128, 80 proton-exchanged, surface structure and Li⁺ sieve properties, **131**, 84 Verwey-type transition and magnetic properties, **131**, 138 X-ray absorption studies, letter to editor, 128, 326 $\text{Li}_{1+y}\text{Mn}_{2-y}\text{O}_4$, electric and magnetic properties, 131, 94 Li_2MnO_3 electric and magnetic properties, 131, 94 and $LiMn_2O_4$, stoichiometry of coexisting phases, XRD and EPR studies, 128, 80 $\text{Li}_4 \text{Mn}_5 \text{O}_{12}$, structure refinement with neutron and X-ray powder diffraction data, 130, 74 $LiMnXO_4(OD)$ (X = P,As), magnetic structure, 132, 202 LiMnVO₄, ambient and high-pressure structures and Mn³⁺/Mn²⁺ redox energy, **128**, 267 Li₃Mo₃O₅(PO₄)₃, with bidimensional connection of MoO₆ octahedra, isolation and magnetic properties, **133**, 391 Li(Mo,W)₂O₃(PO₄)₂, synthesis and intersecting tunnel structure, 128, 215 Li₂Na(MoO)₂(PO₄)₃, synthesis and crystal structure, 129, 298 Li₄NCl, preparation and crystal structure, 128, 241 Li₅NCl₂, ordered and disordered phases, preparation and crystal structure, **130**, 90 Li_{0.5-3x}Nd_{0.5+x}TiO₃ perovskites, microstructural study, **128**, 97 LiNi_{0.8}Mn_{0.2}O₂, neutron diffraction study, 134, 1 Li₂O-TiO₂-Fe₂O₃ ordered spinels, cation distribution, 134, 170 Li₂Pd₃B, with boron in octahedral position, 133, 21 Li₈PrO₆, magnetic susceptibility and EPR spectra, 128, 228 Li₂Pt₃B, with boron in octahedral position, 133, 21 Li₄SiO₄ and Li₄GeO₄ superionics, vibrational spectra and energy characteristics, 134, 232 LiSn₂(PO₄)₃, low-temperature triclinic distortion in, letter to editor, **130**, 322 $\text{Li}_3\text{Sr}_2M\text{N}_4$ (M=Nb,Ta), synthesis and structure, 130, 1 Li₈TbO₆, magnetic susceptibility and EPR spectra, 128, 228 Li₅TiN₃, microwave synthesis, **130**, 266 Li_{0.74}Ti₃O₆, intergrowth phase of rutile and ramsdellite structure, synthesis and characterization, **129**, 7 $LiTi_2O_4$, transformation from spinel to ramsdellite upon heating, 132, 382 LiYF₄, Am³⁺ in, spectroscopic studies and crystal-field analysis, 129, β -rhombohedral boron doped with, electronic structure, electron energy-loss spectroscopic study, **133**, 152 LMTO band structure calculations ThCr₂Si₂-type transition metal compounds,, 130, 254 in tight-binding representation, doped and undoped γ - Ln_2S_3 (Ln = La, Ce,Pr,Nd), **128**, 197 Local environment chemically lithiated iron thiospinel, 134, 238 Luminescence $Ba_5M_4O_{15}$ ($M = Ta^{5+}, Nb^{5+}$), **134,** 187 $Ca_{1-x}La_xS$ (x = 0-0.3), **131,** 101 $Y_{17.33}(BO_3)_4(B_2O_5)_2O_{16}$, 134, 158 I utetium Al₅Lu₃O₁₂, cations arrays in garnet-type compounds, 128, 69 $Hg_2Ba_2LuYb_2O_{8-\delta}$, synthesis and structural and magnetic characterization, 132, 163 LuB₄, polar and reticular microhardness anisotropy, 133, 296 LuNi₂B₂C superconductor, comparison with nonsuperconducting SrRh₂P₂, **130**, 254 LuOOH, cation arrays, 131, 358 $\text{Lu}_2\text{PdO}_{4-\delta}$, orthorhombic T'-type, lutetium and oxygen displacements in, letter to editor, **131**, 185 LuRh₃B₂, single crystal growth from molten copper flux, 133, 82 $Lu_{6+x/3}Si_{11}N_{20+x}O_{1-x}$, preparation and crystal structure, 129, 312 Lu₂Sn₂O₇, structural and bonding trends, 130, 58 LuTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277 M Magneli phases translational disorder generated by oriented defects in, 131, 215 Magnesium $(Co,Mg)_{10n-2}Ge_{3n+1}O_{16n}$, structure, **130**, 9 La₆MgGe₂S₁₄, synthesis and structure, **131**, 399 La₆MgSi₂S₁₄, synthesis and structure, **131**, 399 lanthanum magnesium hexaaluminate, defect energetics and nonstoichiometry, 130, 199 Mg-Fe catalysts prepared from hydrotalcite-like precursors, surface acid/base properties, microcalorimetric studies, 128, 73 $Mg_3Fe_2(SeO_3)_6 \cdot 2H_2O$, synthesis, crystal structure, and IR and Mössbauer spectroscopy, 131, 54 [Mg $_{0.174}$ Ga $_{0.256}$ (OH) $_2$](CO $_3$) $_{0.134}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ synthesis, characterization, and 1 H and 71 Ga MAS NMR, 131, 78 Mg₃N₂, crystal structure, 132, 56 $MgNb_2O_6$ columbite, crystal structure refinement from neutron powder diffraction data, 134, 76 (Mg,Ni)₂(OH)(AsO₄), structural and spectroscopic studies, 132, 107 MgO–Nb₂O₅–NbO, phase diagram and formation of reduced pseudobrookite $Mg_{5-x}Nb_{4+x}O_{15-\delta}$ (1.14 $\leq x \leq$ 1.60) phases, **134**, 76 $Mg_{3}(PO_{4})_{2},$ high-temperature and high-pressure phase, crystal structure, $129,\ 341$ Mg–Zr–O–N system, oxynitride synthesis in ZrO₂-rich part and characterization, **128**, 282 NaCaCdMg₂(AsO₄)₃, alluaudite-like structure, **131**, 298 NaCa₂Mg₂²⁺(AsO₄)₃, cationic substitution effects on garnet–alluaudite polymorphism, **131**, 290 NaMgF₃ perovskites, thermochemistry, 132, 131 $(Ni,Mg)_{10n-2}Ge_{3n+1}O_{16n}$, structure, **130**, 9 $\rm Sr_3MgMO_6$ (M = Pt,Ir,Rh), synthesis, crystal structure, and magnetic properties, 130, 35 Zn(Mg)_{1-x}Cu_xSb₂O₆, trirutile-type compounds, Cu²⁺ polyhedra in, geometry and electronic structure, **131**, 263 Magnesium phthalocyanine thin films prepared by vacuum evaporation, electrical and optical characterization, 128, 27 Magnetic coupling changes after chimie douce reactions: magnetic structures of $LiMnXO_4(OD)$ (X = P,As), 132, 202 Magnetic excitation spectrum SmB₆-based compounds, effect of mixed-valences state, **133**, 230 Magnetic moment BaCuB₂O₅, noncentrosymmetric pyroborate, **129**, 184 Magnetic properties $Ba_4CuMO_4Cl_4$ (M = Li,Na), Cu(III) oxy-chlorides, letter to editor, 129, 360 $Ba_2MM'F_7Cl (M,M' = Mn,Fe,Co,Ni,Zn), 131, 198$ $Bi_{0.267}Pr_{0.733}SrO_{3-\delta}$, 132, 182 $Bi_{1-x}Sr_xMnO_3$, **132**, 139 BN, cubic powders, effect of chemically active media, 133, 292 $\operatorname{Ca}_{1-x}\operatorname{Eu}_x\operatorname{MnO}_3$ $(0 \le x \le 1)$ perovskites, **131**, 144 $CsMo_6O_{10}(Mo_2O_7)(PO_4)_4$, 128, 233 $[Cu(II)(\mu-3,5-dimethylpyrazolate)(\mu-OH)]$, 132, 24 [Cu(II)(6-mercaptopurinolate²⁻)]_n, 132, 78 [Cu(II)(μ -pyrazolate)(μ -OH)], **132**, 24 ``` Fe₃O₄ thin films prepared via sol-gel method, 128, 87 [Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], 134, 349 La_{2-x}Cd_xRu_2O_{7-\delta} pyrochlore oxides, 129, 308 LaMnO_{3+\delta}, 130, 117 LaNi_{1-x}W_xO_3 (0 \le x \le 0.25) perovskites, 134, 274 \text{La}_{1-x}\text{Sm}_x\text{TiO}_3 (0 \leq x \leq 1), letter to editor, 133, 583 LiMnO₂ orthorhombic crystals, long-range and short-range magnetic order, 128, 209 LiMn₂O₄- and Li₂MnO₃-type oxides, 131, 94 LiMn_2O_4 spinels, 131, 138 \text{Li}_3\text{Mo}_3\text{O}_5(\text{PO}_4)_3 with bidimensional connection of \text{MoO}_6 octahedra, 133. 391 A_{1-x}MnO_{3+y} (A = La,Eu) orthomanganites with perovskite structure, 130, 171 A_4Mo₁₈O₃₂ (A = Ca, Y, Gd-Yb) with Mo_n (n = 2,4,6) cluster chains, 134, 45 NaCoPO₄ polymorph with edge-sharing Co²⁺ octahedral chains, 131, 160 with trigonal bipyramidal Co²⁺ and tunnel structure, 129, 328 Na_2MSi_4O_{10} (M = Co, Ni), 131, 335 Nd(Cr_{1-x}Ni_x)O_3, 134, 382 PbFe_xV_{6-x}O₁₁ (1 \leq x \leq 1.75), R-type frustrated system, effects of Fe substitution, 130, 223 (Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta} and (R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta} (R = Nd,Sm,Eu), 133, 445 Pr_{1-x}K_xMnO_3 perovskites (x = 0-0.15), 132, 98 Sm₂ReO₅, 132, 196 Sr_3MgMO_6 (M = Pt,Ir,Rh), 130, 35 Sr_4Mn_3(B_{1-x}Mn_x)O_{10} related to cubic perovskite structure, 134, 395 SrPrO₃ perovskite, 132, 337 (Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}~(0 \le x \le 2) with Tl-2212-type structure, 132, 308 UGe, 129, 113 Zr₂Ni₂In and Zr₂Ni₂Sn, 128, 289 Magnetic ribbons amorphous, state of boron atoms in, impedance spectroscopy and XPS studies, 133, 273 Magnetic structure LiMnXO_4(OD) (X = P,As), 132, 202 Ni_{1+x}Fe_{2-2x/3}O_4 (x = 0.30), 129, 123 ordered cubic Pd₃Mn, 128, 109 U₃Ga₂Ge₃, neutron powder diffraction study, 131, 72 Magnetic susceptibility Ag₂VP₂O₈, 130, 28 BaGe₂, 133, 501 Ba_2(RSb)O_6 (R = Y,Ho) ordered perovskites suitable as substrates for superconducting films, 128, 247 Cu_2(OH)_3(CH_3COO) \cdot H_2O, 131, 252 Ln_3Cu_4P_4O_2 (Ln = La,Ce,Nd), 129, 250 Hg_2Ba_2LnCu_2O_{8-\delta} (Ln = Nd-Gd,Dy-Lu), 132, 163 K_2(VO)_2P_4O_{13} with tunnel structure, 132, 41 LaCuO_{3-y} (0 \le y \le 0.5), control by oxygen content adjustment, 130, 213 Li₈PrO₆ and Li₈TbO₆, 128, 228 Na_xTa_3N_5 (0 \leq x \leq 1.4), 132, 394 Na₂Ti₂Sb₂O layered tetragonal compound, 134, 422 NbS₂-IrS₂ system, 129, 242 Pu_2T_2X (T = Co, Ir, Ni, Pd, Pt, Rh; X = In, Sn), 134, 138 Ti_4TBi_2 (T = Cr,Mn,Fe,Co,Ni), 133, 400 Magnetism \text{Li}_2\text{Fe}_2(\text{MoO}_4)_3, 130, 147 ``` ``` NiCr₂S₄, powder neutron diffraction study, 134, 110 quaternary borocarbides, 133, 169 Sr_{3-x}A_xFe_2O_7 (x \le 0.4; A = Ba,La), 130, 129 Magnetoresistance CMR effect in electron-doped Ca_{1-x}Sm_xMnO₃, 134, 198 Manganese Ba_2MnM'F_7Cl (M' = Mn,Fe,Co,Ni), magnetic properties and neutron diffraction study, 131, 198 Ba₆Mn₂₄O₄₈ with composite tunnel structure, synthesis and HREM study, 132, 239 Bi_{2-x}Pb_xSr_{1.5}Ca_{1.5}Mn_2O_{9-\delta} with 2212 structure, synthesis and crystal chemistry, 132, 420 Bi_{1-x}Sr_xMnO₃, magnetic and electrical properties, 132, 139 Ca_{1-x}Eu_xMnO_3 (0 \leq x \leq 1) perovskites, magnetic study, 131, 144 Ca_{1-x}Sm_xMnO₃, electron-doped, CMR effect in, 134, 198 Cu_xMn_{1-x}(HCOO)₂·2H₂O mixed crystals, thermal decomposition to copper-manganese oxides, 133, 416 HoMnO₃, with metastable perovskite-type structure, synthesis, 129, 334 LaMnO_{3+\delta} synthesis by firing gels using citric acid, 129, 60 transition from polaronic to itinerant behavior of Mn e electrons, 130, (\text{LaMn}_{1-x}\text{Ti}_x)_{1-y}\text{O}_3 (x \le 0.05), electrical transport in, 133, 466 La_{2-x}Sr_{2x}Cu_{1-x}Mn_xO₄, linear Cu-O-Mn electronic interaction in two dimensions, 128, 169 La-Sr-Mn-O system, phase equilibria, 134, 38 \text{LiCr}_{v}\text{Mn}_{2-v}\text{O}_{4} (0 \leq y \leq 1), structure modifications induced by electro- chemical Li deintercalation, Rietveld analysis, 132, 372 LiMnO₂, orthorhombic crystals, long-range and short-range magnetic order, 128, 209 LiMnXO_4(OD) (X = P,As), magnetic structure, 132, 202 LiMn₂O₄, spinel-type oxides charge-discharge process, in situ XAFS study, letter to editor, 133, electric and magnetic properties, 131, 94 and Li₂MnO₃, stoichiometry of coexisting phases, XRD and EPR studies, 128, 80 proton-exchanged, surface structure and Li⁺ sieve properties, 131, 84 Verwey-type transition and magnetic properties, 131, 138 X-ray absorption studies, letter to editor, 128, 326 Li_{1+v}Mn_{2-v}O₄, electric and magnetic properties, 131, 94 Li₂MnO₃ electric and magnetic properties, 131, 94 and LiMn₂O₄, stoichiometry of coexisting phases, XRD and EPR studies, 128, 80 Li₄Mn₅O₁₂, structure refinement with neutron and X-ray powder dif- fraction data, 130, 74 LiMnVO_4, ambient and high-pressure structures and Mn^{3+}/Mn^{2+} re- dox energy, 128, 267 LiNi_{0.8}Mn_{0.2}O₂, neutron diffraction study, 134, 1 Mn_{1-x-y}Ag_y\Phi V_{2-2x-y}Mo_{2x+y}O_6, solid solutions, synthesis and study, 133. 545 MnO₂, ramsdellite and pyrolusite, relationship to groutite and manga- nite: hydrogen bonding and Jahn-Teller distortion, 133, 486 Ln_{0.5}A_{0.5}MnO_3 (Ln = rare earth; A = alkaline earth), charge ordering in, dependence on size of A-site cation, letter to editor, 129, 363 A_{1-x}MnO_{3+y} (A = La,Eu), orthomoganites with perovskite structure, magnetic study, 130, 171 RMn_2O_5 (R = La,Pr,Nd,Sm,Eu), high-oxygen-pressure preparation, ``` structural refinement, and thermal behavior, 129, 105 groutite and manganite, hydrogen bonding and Jahn-Teller distortion MnOOH cation arrays, 131, 358 $Mn_7Sb_4(\mu_5-O)_2(\mu_4-O)_2(\mu_3-OEt)_2(\mu-OEt)_{16}(HOEt)_2$, synthesis and structural analysis, **134**, 312 Mn-Sn system, NiAs-Ni₂In-related structures in, 129, 231 Nd_{0.6}(Ca_{0.4-x}Cd_x)MnO₃ perovskites, charge order–disorder transition, 134, 215 Ni-6 mass% B-58.6 mass% Mo-10 mass% Mn, high-strength boride base hard materials, 133, 243 NiMn₂ $\square_{3\delta/4}O_{4+\delta}$, nonstoichiometric spinels, wide-angle X-ray scattering study, **129**, 271 Pd₃Mn, ordered cubic type, magnetic structure, 128, 109 Pr_{0.5}Ca_{0.5}MnO₃, insulator-metal transition induced by Cr and Co doping, letter to editor, **130**, 162 $Pr_{1-x}K_xMnO_3$ perovskites (x = 0-0.15), structure and properties, 132, 98 Sr₂Cu₂MnO₂S₂, synthesis and properties, 130, 319 $Sr_4Mn_3(B_{1-x}Mn_x)O_{10}$, related to cubic perovskite structure, synthesis and characterization, **134**, 395 tetrahedral oxo and hydroxo Mn(V) clusters, valence stabilization, mixed crystal chemistry, and electronic transitions, 128, 1 Ti₄MnBi₂, preparation and properties, 133, 400 YMnO₃, with metastable perovskite-type structure, synthesis, **129**, 334 Manganite hydrogen bonding and Jahn-Teller distortion in, 133, 486 Mechanical properties injection molded B₄C-C ceramics, 133, 68 Ni–6 mass% B–58.6 mass% Mo–10 mass% X (X = V,Fe,Co,Ti,Mn, Zr,Nb,W) high-strength boride base hard materials, 133, 243 TiB₂ PVD coatings, **133**, 117 Mechanical stress moderate, incipient reaction of Ca(OH)₂ and SiO₂ under, mechanisms: changes in short-range ordering, **130**, 284 Mechanochemical reactions self-propagating, between hexachlorobenzene and calcium hydride, **129**, 263 Melting in microwave oven, ion-conducting glasses prepared by, reversible color changes: structural implications, 131, 173 Mercury ${\rm Hg_2Ba_2} Ln{\rm Cu_2O_8}_{-\delta}$ ($Ln={\rm Nd-Gd,Dy-Lu}$), synthesis and structural and magnetic characterization, 132, 163 Hg₂Mo₅O₁₆, preparation and crystal structure, 128, 205 $(Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}~(0 \le x \le 2)$ with TI-2212-type structure, preparation and characterization, **132**, 308 Metal-insulator transition doped rare earth manganate perovskites crystals prepared by fused salt electrolysis, letter to editor, 130, 327 A_4 Mo₁₈O₃₂ (A = Ca,Y,Gd–Yb) with Mo_n (n = 2,4,6) cluster chains, 134, 45 V₂O₃, acoustic emission during, 133, 430 Metal-semiconductor behavior A_2 Ru₂O_{7-y} (A = Bi,Pb,Tl,rare earth) pyrochlores, letter to editor, 131, 405 Metal-semiconductor transition $La_2NiO_{4+\delta}$, mechanism, **131**, 275 Metal-to-metal bonding in transition metal monocarbides and mononitrides, 128, 121 Methanolothermal synthesis $Cs_4Te_xSe_{16-x}$ (x=1,4) and $Cs_4Te_{9.74}Se_{13.26}$ with ordered Se/Te rings and chains, 134, 364 4-Methylbenzeneamine solid-solid reactions with CuCl₂·2H₂O, CoCl₂·6H₂O, and NiCl₂·6H₂O, **132**, 291 Microcalorimetric studies surface acid/base properties of Mg–Fe catalysts prepared from hydrotalcite-like precursors, 128, 73 Microwave dielectic resonators Ba_{5-x}Sr_xNb₄O₁₅ ceramics, vibrational analysis, **131**, 2 Microwave melting ion-conducting glasses prepared by, reversible color changes: structural implications, 131, 173 Microwave susceptibility NaH₂PO₄ · 2H₂O, 132, 349 Microwave synthesis techniques for crystalline and glassy phosphates with NASICON-type chemistry, 132, 349 for ternary nitride materials, 130, 266 Molecular beam deposition gas source MBD, preparation of boron and boron phosphide films by, 133, 269 Molvbdenum anhydrous ethylenediamine trimolybdate, hydrothermal synthesis and crystal structure, letter to editor, **132**, 224 $BaMo_2O_7(s)$, molar Gibbs energy of formation using solid oxide galvanic cell method, **134**, 416 $Bi_{13}Mo_4VO_{34}E_{13}$, $[Bi_{12}O_{14}E_{12}]_n$ columns and lone pairs E in, 131, 236 Bi_2O_3 –MoO₃–V₂O₅ system, synthesis, crystal structure, and chemistry, 131, 236 Ca₈[Al₁₂O₂₄](MoO₄)₂, structure and high-temperature phase transitions, **129**, 130 CsMo₆O₁₀(Mo₂O₇)(PO₄)₄, synthesis, crystal structure, and magnetic properties, **128**, 233 $CuMoO_4$, p-T phase diagram, 132, 88 Hg₂Mo₅O₁₆, preparation and crystal structure, **128**, 205 $MIn(MoO_4)_2$ (M = Li, Na, K, Cs), vibrational characteristics, 129, 287 In₅Mo₁₈O₂₈, HREM studies on real structure, 130, 290 $K_{0.23}(H_2O)_{0.27}MoO_{3.00}$, $K_{0.23}(H_2O)_{0.43}MoO_{3.00}$, and $K_{0.23}(H_2O)_{0.65}$ MoO_{3.00} bronzes, preparation and thermal decomposition, **132**, 330 K_{0.28}MoO₃ bronze, soft chemical modification, 128, 256 La₃MoO₇, structure and electronic and thermal properties, **129**, 320 lanthanum molybdates with La:Mo ratio of 1:1, direct synthesis by high-energy ball milling, letter to editor, **132**, 443 Li₂Fe₂(MoO₄)₃, weak ferromagnetic ground state structure, **130**, 147 Li₃Mo₃O₅(PO₄)₃, with bidimensional connection of MoO₆ octahedra, isolation and magnetic properties, **133**, 391 Li(Mo,W)₂O₃(PO₄)₂, synthesis and intersecting tunnel structure, 128, 215 Li₂Na(MoO)₂(PO₄)₃, synthesis and crystal structure, 129, 298 $Mn_{1-x-y}Ag_y\Phi V_{2-2x-y}Mo_{2x+y}O_6$, solid solutions, synthesis and study, 133, 545 $(Mo_xCr_{1-x})AlB$, single crystal growth by metal Al solutions and crystal properties, 133, 36 MoO₃ interaction with α -Fe₂O₃, **129**, 30 surfaces, transformation of ultrafine rutile particles to anatase at, letter to editor, **132**, 447 AMo₃O₁₂, negative thermal expansion, letter to editor, **133**, 580 A_4 Mo₁₈O₃₂ (A = Ca,Y,Gd-Yb), with Mo_n (n = 2,4,6) cluster chains, anomalous metal-insulator transitions in, **134**, 45 $(Mo_xW_{1-x})AlB$, single crystal growth by metal Al solutions and crystal properties, 133, 36 MoWO₃(PO₄)₂, crystal structure, 128, 191 NaMoO₂AsO₄, preparation and crystal structure, 133, 386 Na₃(MoO)₂(PO₄)₃ with intersecting tunnel structure, synthesis and crystal chemistry, **132**, 249 Ni-6 mass% B-58.6 mass% Mo-10 mass% X (X = V,Fe,Co,Ti,Mn,Zr,Nb,W) high-strength boride base hard materials, **133**, 243 $[PMo_{4.27}W_{7.73}O_{40}^{6-}][H_3N(CH_2)_6NH_3^{2+}]_3,$ hydrothermal synthesis and structure, **129**, 257 Rb₂Mo₂WO₅(PO₄)₃, interconnected tunnel structure, 130, 48 $TeMo_5O_{16}$, two-dimensional conductor, synthesis and crystal structure, 129, 303 Monetite protonic mobility in, IR spectroscopic and neutron scattering studies, 132. 6 Mössbauer spectroscopy CeRu₄Sn₆, ¹¹⁹Sn study, **134**, 326 chemical behavior of Sn dopant atoms on surface of Cr₂O₃ microcrystals. 132, 284 Fe-doped β -rhombohedral boron, 133, 342 FeNbO₄, ⁵⁷Fe study, **134**, 253 [Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], **134**, 349 M_3 Fe₂(SeO₃)₆·2H₂O (M = Mg,Co,Ni), **131**, 54 Sb₂S₃-As₂S₃-Tl₂S glasses, ¹²¹Sb study, **133**, 458 Ν Nanocrystals borides and related compounds, hardness, elastic modulus, and electrical resistivity, **133**, 249 Nanopowders ${\rm TiO_2}$ anatase, Ru complex sensitizers of, crystal structure, 132, 60 NASICON-type chemistry crysalline and glassy phosphates with, synthesis using high microwave susceptibility of NaH₂PO₄·2H₂O, 132, 349 Negative force constants analysis and determination of force constants by electronic structure, 133, 327 Neodymium AlNdO₃, cation arrays in perovskite-type compounds, 128, 69 NdB₆, polar and reticular microhardness anisotropy, 133, 296 Hg₂Ba₂NdCu₂O_{8-δ}, synthesis and structural and magnetic characterization, 132, 163 HNdTiO₄ and HNdTiO₄·xH₂O, structure and Raman spectra, 130, 110 $Li_{0.5-3x}Nd_{0.5+x}TiO_3$ perovskites, microstructural study, 128, 97 $NaNdTiO_4$ and $Na_2Nd_2Ti_3O_{10},$ structure and Raman spectra, 130, 110 $Nd_2Ba_4Cu_7O_{14+\delta}$, Pr-doped, high-pressure synthesis and characterization, 132, 73 Nd_{0.6}(Ca_{0.4-x}Cd_x)MnO₃ perovskites, charge order–disorder transition, 134, 215 $(Nd_{2-0.125}Ce_{0.125}CuO_{4-0.625})_{2\times 4},$ superconductive mechanism, 129, 174 $Nd(Cr_{1-x}Fe_x)O_3$, relationship of crystal structure and electrical properties, 131, 108 $Nd(Cr_{1-x}Ni_x)O_3$, electrical properties, effect of spin state of Ni^{3+} ions, 134, 382 $Nd_3Cu_4P_4O_2$, synthesis, crystal structure, and properties, **129**, 250 $Nd_3Ga_5O_{12}$ garnet, electron density study, **132**, 300 $NdMn_2O_5$, high-oxygen-pressure preparation, structural refinement, and thermal behavior, **129**, 105 ${\rm Nd_7O_6(BO_3)(PO_4)_2},~{\rm X-ray}$ powder diffraction and vibrational spectra studies, 129, 45 Nd₅Os₃C_{4-x}, preparation and crystal structure, **131**, 49 NdPd₃S₄ bronze, crystal structure and electrical conductivity, 129, 1 $(Nd_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$, structural properties and oxygen stoichiometry, 133, 445 NdRh₂B₂C, synthesis and characterization, 133, 77 γ -Nd₂S₃, doped and undoped, band electronic structure study through LMTO-TB calculations, **128**, 197 Nd₂Sn₂O₇, structural and bonding trends, 130, 58 NdTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277 zirconolite-4M substituted with, analysis and structure, 129, 346 Neutron diffraction, see Powder neutron diffraction Neutron scattering $KAl(HPO_4)_2 \cdot H_2O$, 132, 47 protonic mobility in brushite and monetite, 132, 6 Nicke Ba₂NiM'F₇Cl (M' = Mn,Fe,Co,Ni), magnetic properties and neutron diffraction study, **131**, 198 $Ba_{88}Ni_{87}O_{156}(CO_3)_{19}$, synthesis and structure, 128, 220 Me^+ Br·NiBr₂·6H₂O (Me^+ = K,NH₄,Rb), crystallization and structure, **129**, 200 CaNi₂P₂, electronic structure and chemical bonding, first-principles study, **129**, 147 (CH₃NH₃)₂Ni(II)(SO₄)₂·6H₂O, IR and Raman spectra, 133, 407 doping of ZnO thin films, 128, 176 Hf₂NiP, structure and characterization, 131, 379 $LaFe_xNi_{1-x}O_3$ solid solutions, crystal structure refinement and stability, 133, 379 LaNi₅ particles, adsorption characteristics, 134, 67 La₂NiO_{4+δ}, metal–semiconductor transition, 131, 275 $LaNi_{1-x}W_xO_3$ (0 $\leq x \leq$ 0.25) perovskites, magnetic properties, **134**, 274 $LiNi_{0.8}Mn_{0.2}O_2$, neutron diffraction study, **134**, 1 LuNi₂B₂C superconductor, comparison with nonsuperconducting SrRh₂P₂, 130, 254 (Mg,Ni)₂(OH)(AsO₄), structural and spectroscopic studies, 132, 107 NaCa₂Ni₂⁺(AsO₄)₃, cationic substitution effects on garnet–alluaudite polymorphism, **131**, 290 Na₂NiSi₄O₁₀, magnetic behavior, **131**, 335 $Nd(Cr_{1-x}Ni_x)O_3$, electrical properties, effect of spin state of Ni^{3+} ions, 134, 382 NiX_4 (X = O,S,Se), edge-sharing square planar units, transition metal compounds with, square planar to rectangular distortion in, 128, 181 An_2Ni_2X (An = Pu,Am; X = In,Sn), synthesis, crystal chemistry, and physical properties, **134**, 138 NiAs-Ni₂In, related structures in Mn-Sn system, 129, 231 RNi₂B₂C systems chemical and physical properties, 133, 169 superconducting and magnetic ordering temperatures for R = Tm or Er, effects of Pd, Pt, and Co dopants, 133, 5 Ni-6 mass% B-58.6 mass% Mo-10 mass% X (X = V, Fe, Co, Ti, Mn, Zr, Nb, W) high-strength boride base hard materials, 133, 243 NiCl₂·6H₂O, solid-solid reactions with 4-methylbenzeneamine, 132, 291 $NiCr_2S_4$, structure and magnetism, powder neutron diffraction study, 134, 110 $Ni_{1+x}Fe_{2-2x/3}O_4$ (x = 0.30), obtained by ionic exchange from α -NaFeO₂, crystal and magnetic structures, **129**, 123 Ni₃Fe₂(SeO₃)₆·2H₂O, synthesis, crystal structure, and IR and Mössbauer spectroscopy, **131**, 54 Ni(II) α -hydroxide, hydrotalcite-like phases, 128, 38 $(Ni,Mg)_{10n-2}Ge_{3n+1}O_{16n}$, structure, 130, 9 NiMn₂ $\square_{3\delta/4}O_{4+\delta}$, nonstoichiometric spinels, wide-angle X-ray scattering study, **129**, 271 δ-Ni_{0.25}V₂O₅·H₂O, crystal structure, 132, 323 Pr₂INi₂ and Pr₄I₅Ni, condensed cluster phases, 129, 277 $Pr_2NiO_{4+\delta}$, La- and Sr-substituted, oxygenation and electrical properties. **131.** 167 Ti₄NiBi₂, preparation and properties, 133, 400 Zr₂Ni₂In, structure and properties, **128**, 289 Zr₂NiP, structure and characterization, **131**, 379 Zr₂Ni₂Sn, structure and properties, 128, 289 Niobium Ba₅Nb₄O₁₅, luminescence, 134, 187 BaNbSe₃, quasi-one-dimensional selenide, phase transitions, 132, 188 BaNb₂Se₅, superconductivity, 132, 188 $Ba_{5-x}Sr_xNb_4O_{15}$, microwave dielectric ceramic resonators, vibrational analysis, 131, 2 Ca(PO₃)₂-CaB₄O₇-Na₂B₄O₇-Nb₂O₅, borophosphate glasses, synthesis and second-harmonic generation after poling treatment, **133**, 529 CrZr_{0.75}Nb_{0.25}F₆, antiferrodistortive order in solid solution, **131**, 231 CuNbOF₅·4H₂O, infrared spectroscopy, **133**, 576 $Cu_x(MS)_{1+y}(NbS_2)_2$ (M = Ce,Sm), phase transition, 134, 99 FeNbO₄, electrical resistivity, thermopower, and ⁵⁷Fe Mössbauer study, **134**, 253 Li₃Sr₂NbN₄, synthesis and structure, 130, 1 MgNb₂O₆ columbite, crystal structure refinement from neutron powder diffraction data, **134**, 76 $MgO-Nb_2O_5-NbO$, phase diagram and formation of reduced pseudobrookite $Mg_{5-x}Nb_{4+x}O_{15-\delta}$ (1.14 $\leq x \leq$ 1.60) phases, **134**, 76 NbS₂-IrS₂ system, 1T structure stability, 129, 242 Ni-6 mass% B-58.6 mass% Mo-10 mass% Nb, high-strength boride base hard materials, 133, 243 $(R_{1.5-x} Pr_x Ce_{0.5}) Sr_2 Cu_2 NbO_{10-\delta}$ (R = Nd, Sm, Eu), structural properties and oxygen stoichiometry, **133**, 445 Rb₅VONb₁₄O₃₈, synthesis and crystal structure, **134**, 10 $Tl_{1-x}Sr_2Cu_{1-y}Nb_{x+y}O_{5-\delta}$, 1201-based cuprate, cation ordering in, **132**, 113 Nitrogen, see also Ammonium Ag₂Ce(H₂O)(NO₃)₅, structure and thermal decomposition, temperature-dependent X-ray powder diffraction study, **132**, 361 AlN, microwave synthesis, 130, 266 $[Al_3P_4O_{16}]^{3-} \cdot 3[CH_3CH_2NH_3]^+$, nonaqueous synthesis and characterization, **129**, 37 anhydrous ethylenediamine trimolybdate, hydrothermal synthesis and crystal structure, letter to editor, **132**, 224 BaO-Al₂O₃-AlN system, phase relations, 129, 66 B-C-N-O system, syntheses at high pressure and temperature in electron energy-loss spectroscopy, **133**, 365 materials prepared by, **133**, 356 BN for coatings, matrix, and Si₃N₄–BN composite ceramics, aminoboranes as source for, **133**, 164 cubic, structure and properties, effect of chemically active media, 133, 292 B_6N_{1-x} , synthesis at high pressure and temperature, 133, 356 B₆N, synthesized at high pressure and temperature, electron energy-loss spectroscopy, **133**, 365 Ca_3N_2 , solid solutions with LaN, formation of defect rock salt nitrides $La_{1-x}Ca_xN_{1-x/3}$, 129, 144 carbon fiber/BN matrix microcomposite, preparation, aminoboranes as BN source for, 133, 164 Ca–Zr–O–N system, oxynitride synthesis in ZrO₂-rich part and characterization, 128, 282 $Cd_3^{II}[(Fe^{III}/Co^{III})(CN)_6]_2 \cdot 14H_2O$, X-ray diffraction and spectral studies, 129, 17 $(CH_3NH_3)_2M(II)(SO_4)_2 \cdot 6H_2O$ (M(II) = Cu,Zn,Ni), IR and Raman spectra, 133, 407 C₂₉H₃₀N₅O₄S₂Ru, crystal structure, 132, 60 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)]$, synthesis and characterization, 128, 318 CrN, synthesis from ammonolysis of Cr₂S₃, 134, 120 CrWN₂, chemical synthesis and crystal structure, 128, 185 [Cu(II)(μ -3,5-dimethylpyrazolate)(μ -OH)], antiferromagnetic coupling, Cu₂Fe(CN)₆, interaction with silver ions in solution, 132, 399 [Cu(II)(6-mercaptopurinolate²⁻)]_n, magnetic study, 132, 78 [Cu(II)(μ -pyrazolate)(μ -OH)], antiferromagnetic coupling, 132, 24 [Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], hydrothermal synthesis, crystal structure, and magnetic properties, **134**, 349 Fe_4W_2N , with unique η -carbide structure, synthesis, 134, 302 (Fe_{0.8}W_{0.2})WN₂, synthesis and characterization, 131, 374 Ga(CN)₃, disordered crystal structure, **134**, 164 $K/V/P/N(C_2H_5)_3/H_2O$ and $NH_4/V/P/H_2O$ hydrothermal systems, analysis at 473 K, 134, 286 $La_{1-x}Ca_xN_{1-x/3}$ (0 < x < 0.7), defect rock salt nitrides prepared from LaN and Ca_3N_2 , 129, 144 LaN, solid solutions with Ca_3N_2 , formation of defect rock salt nitrides $La_{1-x}Ca_xN_{1-x/3}$, 129, 144 Li₃AlN₂, microwave synthesis, **130**, 266 Li₃FeN₂, microwave synthesis, **130**, 266 Li₄NCl, preparation and crystal structure, **128**, 241 Li₅NCl₂, ordered and disordered phases, preparation and crystal structure, **130**, 90 $\text{Li}_3\text{Sr}_2M\text{N}_4$ (M=Nb,Ta), synthesis and structure, 130, 1 Li₅TiN₃, microwave synthesis, **130**, 266 4-methylbenzeneamine, solid–solid reactions with $CuCl_2 \cdot 2H_2O$, $CoCl_2 \cdot 6H_2O$, and $NiCl_2 \cdot 6H_2O$, 132, 291 Mg₃N₂, crystal structure, 132, 56 Mg–Zr–O–N system, oxynitride synthesis in $\rm ZrO_2$ -rich part and characterization, 128, 282 $Na_xTa_3N_5$ ($0 \le x \le 1.4$), synthesis and partial characterization, 132, 394 $N(CH_3)_4 \cdot Zn(H_2PO_4)_3$, molecular cluster, synthesis and crystal structure, 131, 363 N(CH₃)₄·Zn(HPO₄)(H₂PO₄), open framework phase built up from low-density 12-ring topology, synthesis and crystal structure, **131**, 363 NH₂CH=NH₂SnI₃ cubic perovskite and related systems, synthesis, resistivity, and thermal properties, **134**, 376 [NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganicorganic layers, synthesis and characterization, **132**, 229 NH₄/V/P/H₂O and K/V/P/N(C₂H₅)₃/H₂O hydrothermal vanadium phosphate systems, analysis at 473 K, and crystal structures of NH₄VOPO₄ and (NH₄)₃V₂O₃(VO)(PO₄)₂(HPO₄), **134**, 286 $[PMo_{4.27}W_{7.73}O_{40}^{6-}][H_3N(CH_2)_6NH_3^{2+}]_3,$ hydrothermal synthesis and structure, **129**, 257 $(Pr/La)Co(CN)_6 \cdot 5H_2O$, mixed cationic systems, synthesis and crystal structure, **129**, 12 Si₃N₄-BN composite ceramic, preparation, aminoboranes as BN source for, **133**, 164 $R_{6+x/3} Si_{11} N_{20+x} O_{1-x}$ (R=Y and Gd–Lu), preparation and crystal structures, **129**, 312 TiN microwave synthesis, 130, 266 nanocrystalline materials, hardness, elastic modulus, and electrical resistivity, **133**, 249 synthesis from ammonolysis of TiS2, 134, 120 TiN/TiB₂ nanocrystalline materials, hardness, elastic modulus, and electrical resistivity, **133**, 249 [Ti₃(PO₄)₄(H₂O)₂]·NH₃, synthesis and X-ray powder structure, 132, 213 VN metal-to-metal bonding in, 128, 121 microwave synthesis, 130, 266 synthesis from ammonolysis of VS₂, **134**, 120 Zn(CN)₂, disordered crystal structure, 134, 164 $\beta\text{-}Zr(OH)_2(NO_3)_2\cdot H_2O,$ structural analysis by X-ray powder diffraction, **128**, 295 α-Zr(OH)₂(NO₃)₂·1.65H₂O, structural analysis by X-ray powder diffraction, 128, 295 Nonlinear optical materials 2-amino-5-nitropyridinium chloride, crystal growth, 129, 22 NOR spectroscopy ¹²⁷I, in kinetic study of Cs₃Sb₂I₉ reconstructive phase transformation, **134**, 319 Nuclear magnetic resonance $KAl(HPO_4)_2 \cdot H_2O$, 132, 47 $[Mg_{0.174}Ga_{0.256}(OH)_2](CO_3)_{0.134} \cdot mH_2O$, 131, 78 NaO_{0.44}C_{5.84} graphite intercalation compound with sodium and peroxide, **131**, 282 sol-gel alumina doped with La and Ce, 128, 161 Nuclear structure U₃Ga₂Ge₃, neutron powder diffraction study, **131**, 72 0 Obituary Hans Nowotny, 133, 1 Octaheral unit of antiprisms diamond-type stacking, (H₃O)Yb₃F₁₀·H₂O prepared by chimie douce synthesis, **128**, 42 stackings of UGP in description of complex structures, 128, 52 Open-framework phosphates [Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], hydrothermal synthesis, crystal structure, and magnetic properties, **134**, 349 Optical memory fluorescent photosensitive glass useful for, synthesis and characterization, 134, 362 Optical properties magnesium phthalocyanine thin films prepared by vacuum evaporation, 128, 27 Na₃Eu(CO₃)₃, 132, 33 $Zn_{2-x}Sn_{1-x}In_{2x}O_{4-\delta}$ spinel, **134**, 192 Optical spectrum β -rhombohedral boron, complete spectrum, 133, 129 Ordering anionic vacancies in BaCoO_{2.94} hexagonal related perovskites, **128**, 130 antiferromagnetic, *see* Antiferromagnetic ordering in fcc-based alloys, similarity to cation ordering in [(Tl,M)O] layers of 1201-based cuprate, 132, 113 hydrogen bonding-induced NH₄⁺ ordering in β -(NH₄)₂FeF₅ at low temperature, structural and spectroscopic evidence, **131**, 189 or disordering, in $A(B'B'')O_3$ perovskite compounds, simple method for judging, 134, 420 short-range, mechanically induced precursor in amorphous state between $Ca(OH)_2$ and SiO_2 , 130, 284 vacancy, see Vacancy ordering Osmium CeOs₃B₂, heavy fermion superconductors, chemical bonding topology, 131, 394 La₂IOs₂ and Pr₃I₃Os, condensed cluster phases, 129, 277 $Ln_5 Os_3 C_{4-x}$ (Ln = La - Nd, Sm), preparation and crystal structure, 131, 49 $(Mo_xCr_{1-x})AlB$ and $(Mo_xW_{1-x})AlB$ resistance to, 133, 36 topotactic, quadruple-rutile-type chain structure $Na_{0.875}Fe_{0.875}Ti_{1.125}$ O_4 , 130, 184 ultrafine copper powder resistance to, improvement by phosphating treatment, **130**, 157 Oxide conductors Bi–Ln–V–O anionic conductors with δ-Bi₂O₃ fluorite-type structure (Ln = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), **134**, 219 Oxides-garnets synthetic, calculation of elementary cell parameter of, empirical formula for, **134**, 338 Oxoethoxide $Mn_7Sb_4(\mu_5-O)_2(\mu_4-O)_2(\mu_3-OEt)_2(\mu-OEt)_{16}(HOEt)_2$, synthesis and structural analysis, **134**, 312 Oxygen Ca-Zr-O-N and Mg-Zr-O-N systems, oxynitride synthesis in ZrO₂-rich part and characterization, 128, 282 Co-free oxides with high permeability to, synthesis, 130, 316 content in orthorhombic YBa₂Cu₃O_{6+x}, dependence of lattice parameters on, **134**, 356 displacement in orthorhombic T'-type $\operatorname{Lu_2PdO_{4-\delta}}$, letter to editor, 131, 185 introduction in $YBa_2Cu_3O_y$ single crystal, effects on structure and electron density, 130, 42 in LaCuO_{3-y} ($0 \le y \le 0.5$), content adjustment, effect on copper valence and properties, **130**, 213 α -MnOOH and γ -MnOOH, hydrogen bonding and Jahn–Teller distortion in, 133, 486 nonstoichiometry in La_{2-x}Sr_xCuO_{4-δ}, 131, 150 pressure, effect on ${\rm La_2NiO_{4+\delta}}$ excess oxygen concentration and electrical conductivity, 131, 275 stoichiometry in $(Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta}$ and $(R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$ (R=Nd,Sm,Eu), 133, 445 two-coordinate bridges, symmetric stretching vibrations in negative thermal expansion of $ZrV_xP_{2-x}O_7$ and AW_2O_8 (A=Zr,Hf) at high temperature, letter to editor, 129, 160 vacancy ordering in $Pb_2(M_{1.5}W_{0.5})O_{6.5}$ (M = Ti,Sn) defect pyrochlores, 130, 81 Oxygenation $Pr_{2-x}M_xO_{4+\delta}$ (M = La,Sr), 131, 167 Oxyhydroxides trivalent metal, cation array of, 131, 358 Oxynitrides synthesis in ZrO₂-rich part of Ca-Zr-O-N and Mg-Zr-O-N systems and characterization, **128**, 282 Р Palladium Al-Pd-Re quasicrystals modulated photocurrent measurements, 133, 224 photocurrent observations, 133, 302 $Al_{92-x}Pd_xRe_8$ -type quasicrystals, electronic properties, **133**, 160 Ba₁₁Pd₁₁O₂₀(CO₃)₂, synthesis and structure, **128**, 220 effect on superconducting and magnetic ordering temperatures in RNi_2B_2C (R = Tm,Er), 133, 5 Li₂Pd₃B, with boron in octahedral position, 133, 21 $\text{Lu}_2\text{PdO}_{4-\delta}$, orthorhombic T'-type, lutetium and oxygen displacements in, letter to editor, **131**, 185 $(ND_4)_2PdCl_6$, antifluorite, phase analysis, 131, 221 ${ m Pd}X_4$ (X = O,S,Se), edge-sharing square planar units, transition metal compounds with, square planar to rectangular distortion in, 128, 181 $An_2\text{Pd}_2X$ (An = Pu, Am; X = In, Sn), synthesis, crystal chemistry, and physical properties, **134**, 138 Pd/CeO₂/SiO₂ systems, spreading and phase transformations in, 131, 121 Pd₃Mn, ordered cubic type, magnetic structure, **128**, 109 MPd_3S_4 bronzes (M = La, Nd, Eu), crystal structure and electrical conductivity, 129, 1 Y-Pd-B-C system, chemical and physical properties, 133, 169 Parallel electron energy-loss spectroscopy Be-B-bearing materials, 133, 347 Permeability to oxygen, Co-free oxides with, synthesis, 130, 316 Perovskites $AlLnO_3$ (Ln = La, Ce, Pr, Nd, Sm, Ho), cation arrays in, 128, 69 BaCoO_{2.94}, hexagonal related, ordering of anionic vacancies in, **128**, 130 $Ba_2(RSb)O_6$ (R = Y,Ho), suitable as substrates for superconducting films, characterization, **128**, 247 $Ba_{2-x}Sr_xDyTaO_6$ (x = 0,1,2), development and dielectric properties, 133, 522 (Ba,Sr)_{1+y}UO_{3+x}, structure and thermodynamics, 131, 341 BaTl_{0.5}Sb_{0.5}O₃, structural analysis, letter to editor, **128**, 323 $Ba_{1+y}UO_{3+x}$, structure and thermodynamics, 131, 341 BiMnO₃, ferromagnetic, effect of hole-doping, **132**, 139 $Ca_{1-x}Eu_xMnO_3$ (0 $\leq x \leq$ 1), magnetic study, **131**, 144 doped rare earth manganate crystals, synthesis using fused salt electrolysis, letter to editor, 130, 327 HoMnO₃ and YMnO₃, with metastable structures, synthesis, **129**, 334 LaFe_xNi_{1-x}O₃, crystal structure refinement and stability, **133**, 379 LaNi_{1-x}W_xO₃ ($0 \le x \le 0.25$), magnetic properties, **134**, 274 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$, Coulometric titration at high temperature: electronic band structure effect on nonstoichiometry behavior, **133**, 555 Li_{0.5-3x}Nd_{0.5+x}TiO₃, microstructural study, 128, 97 A_{1-x} MnO_{3+y} (A = La,Eu) orthomanganites, magnetic study, **130**, 171 NaMgF₃, thermochemistry, **132**, 131 $Nd_{0.6}(Ca_{0.4-x}Cd_x)MnO_3$, charge order–disorder transition, **134**, 215 $Nd(Cr_{1-x}Ni_x)O_3$, orthorhombic, electrical properties, effect of spin state of Ni^{3+} ions, **134**, 382 NH₂CH=NH₂SnI₃ cubic perovskite and related systems, synthesis, resistivity, and thermal properties, **134**, 376 $A(B'B'')O_3$ compounds, simple method for judging ordering or disordering in, 134, 420 $Pr_{1-x}K_xMnO_3$ (x=0–0.15), structure and properties, **132**, 98 related 10-layer oxyhalide $Ba_5Ru_{1.6}W_{0.4}Cl_2O_9$, crystal structure, **132**, 407 $SrPrO_3$, structure and magnetic properties, **132**, 337 structure, closely related $Sr_4Mn_3(B_{1-x}Mn_x)O_{10}$, synthesis, 134, 395 Peroxide and sodium, intercalation into graphite, 131, 282 Pharmacosiderite rhombohedrally distorted, $Na_4[(TiO)_4(SiO_4)_3] \cdot 6H_2O$, synthesis and crystal structure, 134, 409 Phase diagram BaO-Al₂O₃-AlN system, **129**, 66 La₂O₃-Co-Co₂O₃ system at 1100 and 1150°C, **131**, 18 La-Sr-Mn-O system, 134, 38 $MgO-Nb_2O_5-NbO$, 134, 76 MnV₂O₆-AgVMoO₆-MoO₃ system, 133, 545 NbS_2 -IrS₂ system, **129**, 242 orientationally disordered crystals of 2-amino-2-methyl-1,3-propanediol and 1,1,1-tris(hydroxymethyl)propane, **133**, 536 perovskite A(B'B'')O₃ compounds: simple method for judging ordering or disordering, **134**, 420 p-T phase diagram of CuMoO₄, 132, 88 Ti-B-C system including sections TiC_y-TiB_2 and $B_4C_y-TiB_2$, 133, 205 Phase relations SrO-CaO-CuO system under high pressure, 132, 274 $Zn_{2-x}Sn_{1-x}In_{2x}O_{4-\delta}$ spinel, **134**, 192 Phase transformations BiLa₂O_{4.5+ δ}, **131**, 64 in highly dispersed CeO_2/SiO_2 and $Pd/CeO_2/SiO_2$ systems, 131, 121 ABO_4 structures, 129, 82 reconstructive, $Cs_3Sb_2I_9$: Rietveld analysis of X-ray diffraction and ^{127}I NQR, 134, 319 in sol-gel aluminum titanate at high temperature, FTIR study, 131, 181 Phase transitions BaNbSe₃ quasi-one-dimensional selenide, 132, 188 Ba₃(VO₄)₂ at high pressure, 132, 156 $Ca_8[Al_{12}O_{24}](MoO_4)_2$ at high temperature, 129, 130 in Cu-intercalated misfit-layer compounds, 134, 99 1,10-decanedicarboxylic acid/urea inclusion compound, 128, 273 garnet–alluaudite polymorphism in $NaCa_2M_2^{2+}(AsO_4)_3$ ($M^{2+}=Mg$, Ni,Co), cationic substitution effects, **131**, 290 LiTi₂O₄ spinel to ramsdellite upon heating, 132, 382 metal-insulator, in V₂O₃, acoustic emission during, 133, 430 NaMgF₃ perovskites, 132, 131 Na₂Ti₂Sb₂O layered tetragonal compound, 134, 422 (ND₄)₂PdCl₆ antifluorite, 131, 221 rutile to anatase by transformation of ultrafine particles at negatively charged colloid surfaces, letter to editor, 132, 447 $Sr_3(VO_4)_2$ at high pressure, 132, 156 Verwey-type, LiMn₂O₄ spinels, **131**, 138 $Zn(Mg)_{1-x}Cu_xSb_2O_6$ trirutile-type compounds, 131, 263 α -Zr(HPO₄)₂·H₂O large crystals, 132, 17 Phonons intraicosahedral, interaction with optically excited carriers, 133, 125 Phonon spectra B-C-Al compounds with boron carbide structure, 133, 254 B₆O, 133, 260 B₁₂P₂ doped with Si, 133, 140 metal hexaborides, 133, 264 Phosphate glasses with NASICON-type chemistry, synthesis using high microwave susceptibility of NaH₂PO₄·2H₂O, 132, 349 Phosphating treatment effect on oxidation resistance of ultrafine copper powder, 130, 157 Phosphorus Ag₂VP₂O₈, structure and ionic conductivity, 130, 28 $[Al_3P_4O_{16}]^{3-} \cdot 3[CH_3CH_2NH_3]^+$, nonaqueous synthesis and characterization, **129**, 37 Ba(CoPO₄)₂·H₂O, lamellar hydrated phosphate with two-dimensional array of Co-O-Co network, **131**, 387 BP CVD wafers, thermoelectric properties, 133, 314 films obtained by gas source molecular beam deposition, preparation and electrical properties, **133**, 269 $B_{12}P_2$ epitaxial growth of rhombohedral single crystalline films by chemical vapor deposition, **133**, 104 Si-doped, interband transitions and phonon spectra, 133, 140 CaFe₂P₂ and CaNi₂P₂, electronic structure and chemical bonding, first-principles study, 129, 147 CaHPO₄ and CaHPO₄ · 2H₂O, protonic mobility in, IR spectroscopic and neutron scattering studies, 132, 6 Ca₃(P₅O₁₄)₂, characterization, **129**, 196 $Ca(PO_3)_2$ – CaB_4O_7 – $Na_2B_4O_7$ – Nb_2O_5 , borophosphate glasses, synthesis and second-harmonic generation after poling treatment, **133**, 529 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)],$ synthesis and characterization, 128, 318 CsMo₆O₁₀(Mo₂O₇)(PO₄)₄, synthesis, crystal structure, and magnetic properties, **128**, 233 Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)], two-dimensional solid with pillared layers, synthesis and structure, **132**, 144 $Ln_3Cu_4P_4O_2$ (Ln=La,Ce,Nd), synthesis, crystal structure, and properties, 129, 250 [Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], hydrothermal synthesis, crystal structure, and magnetic properties, 134, 349 GaP, zinc blende crystals, linear electro-optic coefficient, 130, 54 GaPO₄ thin films, synthesis and dielectric properties, 134, 91 InP, zinc blende crystals, linear electro-optic coefficient, 130, 54 IrSi₃P₃, Raman study, 128, 142 KAl(HPO₄)₂·H₂O, X-ray diffraction, neutron scattering, and solid-state NMR, **132**, 47 $K[Fe_2(PO_4)_2(OH)(H_2O)] \cdot H_2O$, hydrogen bonding and structural relationships, 133, 508 $K_2(VO)_2P_4O_{13}$, with tunnel structure, synthesis and properties, 132, $LiMnPO_4(OD)$ (X = P,As), magnetic structure, 132, 202 Li₃Mo₃O₅(PO₄)₃, with bidimensional connection of MoO₆ octahedra, isolation and magnetic properties, **133**, 391 Li(Mo,W)₂O₃(PO₄)₂, synthesis and intersecting tunnel structure, 128, 215 Li₂Na(MoO)₂(PO₄)₃, synthesis and crystal structure, 129, 298 $LiSn_2(PO_4)_3$, low-temperature triclinic distortion in, letter to editor, 130, 322 $Mg_3(PO_4)_2$, high-temperature and high-pressure phase, crystal structure, 129, 341 MoWO₃(PO₄)₂, crystal structure, **128**, 191 NaCoPO₄ polymorph with edge-sharing Co²⁺ octahedral chains, synthesis and characterization, 131, 160 with trigonal bipyramidal Co²⁺ and tunnel structure, **129**, 328 NaH₂PO₄· 2H₂O, high microwave susceptibility: synthesis of crystalline and glassy phosphates with NASICON-type chemistry, **132**, 349 Na₃In₂(PO₄)₃, hydrothermal synthesis and structure, 131, 131 Na₃(MoO)₂(PO₄)₃ with intersecting tunnel structure, synthesis and crystal chemistry, **132**, 249 $Na_3M(OH)(HPO_4)(PO_4)$ (M = Al,Ga), synthesis and chain structure, 128, 21 50Na₂O-49P₂O₅-0.5Eu₂O₃-0.5CeO₂: fluorescent photosensitive glass for optical memory and fluorescence holography, **134**, 362 N(CH₃)₄·Zn(H₂PO₄)₃, molecular cluster, synthesis and crystal structure, 131, 363 N(CH₃)₄· Zn(HPO₄)(H₂PO₄), open framework phase built up from low-density 12-ring topology, synthesis and crystal structure, **131**, 363 [NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganicorganic layers, synthesis and characterization, **132**, 229 $[NH_4]^+[(Sn_3O)_2(PO_4)_3]^-$, synthesis and structure, **134**, 207 $(NH_4)_2[(Ti_3O_2)(HPO_4)_2(PO_4)_2]$, synthesis and X-ray powder structure, 132, 213 NH_4VOPO_4 and $(NH_4)_3V_2O_3(VO)(PO_4)_2(HPO_4)$, crystal structure, and analysis of hydrothermal vanadium phosphate systems at 473 K, 134, 286 $Ln_7O_6(BO_3)(PO_4)_2$ (Ln = La,Nd,Gd,Dy), X-ray powder diffraction and vibrational spectra studies, **129**, 45 $M_2M'P$ (M = Zr,Hf; M' = Co,Ni), structure and properties and relations to ZrNi and HfNi, 131, 379 Pb₂BiO₂PO₄, crystal structure, 133, 516 [PMo $_{4.27}W_{7.73}O_{40}^{6-}$][H $_3$ N(CH $_2$) $_6$ NH $_3^{2+}$] $_3$, hydrothermal synthesis and structure, **129**, 257 $A_2MP_2O_{12}$, negative thermal expansion, letter to editor, 133, 580 $PtSi_2P_2$, synthesis and crystal structure, 133, 473 PtSi₃P₂, synthesis, crystal structure, and electrical resistivity, **133**, 473 Rb₂Mo₂WO₅(PO₄)₃, interconnected tunnel structure, **130**, 48 $RbZn_2(HPO_4)_2(H_2PO_4) \cdot 2H_2O$ and $RbZn(HPO_4)(H_2PO_4) \cdot H_2O$, syntheses and crystal structures, **134**, 148 RhSi₃P₃, Raman study, 128, 142 Sn(O₃PCH₂CH₃) layered phase, room-temperature synthesis and structural characterization, **132**, 438 Sn₂P₂S₆, synthesis at room temperature, **129**, 157 SrRh₂P₂, electronic structure, substitution effects, and comparison with superconducting LuNi₂B₂C, **130**, 254 [Ti₂O(PO₄)₂(H₂O)₂], synthesis and X-ray powder structure, **132**, 213 $[Ti_3(PO_4)_4(H_2O)_2] \cdot NH_3$, synthesis and X-ray powder structure, 132, $UXPO_4 \cdot 2H_2O$ (X = Cl,Br), structure determination from powder X-ray diffraction data, 132, 315 W₅As_{2.5}P_{1.5} with one-dimensional vertex-linked W₆ cluster, 131, 310 α-Zr(HPO₄)₂·H₂O large crystals, thermoanalytical study, phase transitions, and dimensional changes, **132**, 17 $\text{ZrV}_x\text{P}_{2-x}\text{O}_7$, negative thermal expansion at high temperature, symmetric stretching vibrations of two-coordinate oxygen bridges in, letter to editor, **129**, 160 Photocurrent amorphous and β -rhombohedral boron, transient studies, **133**, 201 icosahedral cluster solids Al-Pd-Re quasicrystals, 133, 302 modulated photocurrent measurements, 133, 224 β-rhombohedral boron, analysis of transient photoconduction under conditions allowing carrier injection from electrode, **133**, 97 YB₆₆, modulated photoconductivity measurement, **133**, 195 Photosensitive glass fluorescent, synthesis and characterization: material useful for optical memory and fluorescence holography, 134, 362 Physical vapor deposition boride thin film coatings, 133, 279 TiB₂ coatings loaded by, structure and properties, 133, 117 Piezoresistance boron thin films, 133, 100 Pigments iron zircon, synthesis by pyrolysis of aerosols, 128, 102 Platinum effect on superconducting and magnetic ordering temperatures in RNi_2B_2C (R = Tm,Er), 133, 5 Li₂Pt₃B, with boron in octahedral position, 133, 21 PtX_4 (X = O,S,Se), edge-sharing square planar units, transition metal compounds with, square planar to rectangular distortion in, 128, 181 An_2 Pt₂X (An =Pu,Am; X =In,Sn), synthesis, crystal chemistry, and physical properties, **134**, 138 PtSi₂P₂, synthesis and crystal structure, **133**, 473 PtSi₃P₂, synthesis, crystal structure, and electrical resistivity, 133, 473 Sr₃MgPtO₆, synthesis, crystal structure, and magnetic properties, 130, Sr₃MgPtO₆, synthesis, crystal structure, and magnetic properties, 130, 35 UPt_3 , heavy fermion superconductors, chemical bonding topology, 131, 394 U₂PtC₂, heavy fermion superconductors, chemical bonding topology, 131, 394 Plutonium Pu_2T_2X (T = Co,Ir,Ni,Pd,Pt,Rh; X = In,Sn), synthesis, crystal chemistry, and physical properties, 134, 138 Pnictidohalide Cd₈As₇Cl, with new structure type, **134**, 282 Point defects in $Sb_2Te_{3-x}Se_x$ crystals, **129**, 92 Polyparaphenylene electrochemical intercalation of Li ions in LiClO₄-carbonates electrolytes, 132, 434 Polyselenides $Cs_4Te_xSe_{16-x}$ (x=1,4) and $Cs_4Te_{9.74}Se_{13.26}$, with ordered Se/Te rings and chains, methanolothermal design and structure, **134**, 364 Potassium Cs₂KEuCl₆, crystal structure by powder x-ray diffraction, 132, 1 Cs₂KTbCl₆, crystal structure by powder x-ray diffraction, 132, 1 K⁺, electrochemical doping of oxide ceramics with K-β"-Al₂O₃ ionic conductors, 128, 93 KAg₂, Laves phase, high-pressure synthesis, 130, 311 KAl(HPO₄)₂·H₂O, X-ray diffraction, neutron scattering, and solid-state NMR, 132, 47 KB₆, electronic structure calculations, 133, 51 KBr· Me^{2+} Br₂·6H₂O (Me^{2+} = Co,Ni), crystallization and structure, KCu_{7-x}S₄, electrical resistivity anomalies and superlattice modulations, role of vacancy ordering, 134, 5 K[Fe₂(PO₄)₂(OH)(H₂O)]·H₂O, hydrogen bonding and structural relationships, 133, 508 $K_{0.23}(H_2O)_{0.27}MoO_{3.00},\ K_{0.23}(H_2O)_{0.43}MoO_{3.00},\ and\ K_{0.23}(H_2O)_{0.65}$ MoO_{3,00} bronzes, preparation and thermal decomposition, 132, K₅In₅Ge₅As₁₄ and K₈In₈Ge₅As₁₇, layered materials, synthesis and crystal structure, 130, 234 KIn(MoO₄)₂ and KIn(WO₄)₂, vibrational characteristics, 129, 287 K_{0.28}MoO₃ bronze, soft chemical modification, **128**, 256 KNa(C₄H₄O₆)·4H₂O, structure, 131, 350 K₂U₄O₁₂ and K₂U₄O₁₃, EMF and calorimetric measurements of thermodynamic properties, 132, 342 $K_2(VO)_2P_4O_{13}$, with tunnel structure, synthesis and properties, 132, 41 K/V/P/N(C₂H₅)₃/H₂O hydrothermal system, analysis at 473 K, 134, 286 K_2ZnGeO_4 , α and β forms, crystal structures, 134, 59 LiKCO₃, crystal structure, neutron powder diffraction study, 128, 156 $Pr_{1-x}K_xMnO_3$ perovskites (x = 0-0.15), structure and properties, 132, 98 Powder neutron diffraction $Ba_2MM'F_7Cl (M,M' = Mn,Fe,Co,Ni,Zn), 131, 198$ $Bi_{0.267}Pr_{0.733}SrO_{3-\delta}$, 132, 182 Ca(OD)₂ II prepared at high pressure, 132, 267 CsTiSi₂O_{6.5}, **130**, 97 KAl(HPO₄)₂·H₂O, 132, 47 LiKCO₃, **128**, 156 Li₄Mn₅O₁₂, structure refinement, **130**, 74 LiNi_{0.8}Mn_{0.2}O₂, **134**, 1 MgNb₂O₆ columbite, crystal structure refinement, 134, 76 NiCr₂S₄, structure and magnetism, 134, 110 (3PbO·PbSO₄·H₂O), 132, 173 U₃Ga₂Ge₃, 131, 72 YCoO₃, 130, 192 YFe₂D_{3.5}, **133**, 568 Powder X-ray diffraction Ag₂Ce(H₂O)(NO₃)₅, temperature-dependent study of structure and thermal decomposition, 132, 361 Ba₂Cu₃Cl₂O₄, **124**, 319; comment, **130**, 161 $Ca_8[Al_{12}O_{24}](MoO_4)_2$, **129**, 130 Ca₃(P₅O₁₄)₂, **129**, 196 $Cd_3^{II}[(Fe^{III}/Co^{III})(CN)_6]_2 \cdot 14H_2O, 129, 17$ cristobalite-related phases in NaAlO₂-NaAlSiO₄ system, 131, 24 Cs₂KEuCl₆, 132, 1 Cs₂KTbCl₆, 132, 1 Cs₃Sb₂I₉: reconstructive phase transformation and kinetics, 134, 319 Cu₂(OH)₃(CH₃COO)·H₂O, ab initio study, 131, 252 $(Fe_{0.8}W_{0.2})WN_2$, 131, 374 Li₄Mn₅O₁₂, structure refinement, **130**, 74 $(NH_4)_2[(Ti_3O_2)(HPO_4)_2(PO_4)_2], 132, 213$ $Ln_7O_6(BO_3)(PO_4)_2$ (Ln = La,Nd,Gd,Dy), 129, 45 Pb_{0.26}WO₃, **130**, 176 RS-camphor: low-temperature crystal structure, 134, 211 sol-gel alumina doped with La and Ce, 128, 161 $[Ti_2O(PO_4)_2(H_2O)_2]$, **132**, 213 $[Ti_3(PO_4)_4(H_2O)_2] \cdot NH_3$, 132, 213 β -Zr(OH)₂(NO₃)₂·H₂O, **128,** 295 YB₂₅, 133, 122 Power transducers $UXPO_4 \cdot 2H_2O (X = Cl,Br), 132, 315$ α -Zr(OH)₂(NO₃)₂ · 1.65H₂O, **128**, 295 fluoridated PZT ceramics for, 130, 103 Praseodymium AlPrO₃, cation arrays in perovskite-type compounds, 128, 69 Bi_{0.267}Pr_{0.733}SrO_{3-δ}, crystal structure and magnetic properties, neutron diffraction studies, 132, 182 Li₈PrO₆, magnetic susceptibility and EPR spectra, 128, 228 Pr⁴⁺, doped in Sr₂SnO₄ and Ba₂SnO₄, EPR spectra, 130, 250 PrB₆, polar and reticular microhardness anisotropy, 133, 296 $(R_{1-x}, Pr_x)Ba_4Cu_7O_{14+\delta}$ (R = Nd, Eu, Tm), high-pressure synthesis and characterization, 132, 73 Pr_{0.5}Ca_{0.5}MnO₃, insulator-metal transition induced by Cr and Co doping, letter to editor, 130, 162 $(R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$ (R = Nd,Sm,Eu), structural properties and oxygen stoichiometry, 133, 445 $(Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta}$, structural properties stoichiometry, 133, 445 Pr₂INi₂, Pr₄I₅Ni, and Pr₃I₃Os, condensed cluster phases, 129, 277 $Pr_{1-x}K_xMnO_3$ perovskites (x = 0-0.15), structure and properties, 132, 98 $(Pr/La)Co(CN)_6 \cdot 5H_2O$, mixed cationic systems, synthesis and crystal structure, 129, 12 PrMn₂O₅, high-oxygen-pressure preparation, structural refinement, and thermal behavior, 129, 105 Pr₂NiO_{4+δ}, La- and Sr-substituted, oxygenation and electrical properties, 131, 167 Pr₅Os₃C_{4-x}, preparation and crystal structure, 131, 49 PrRh₂B₂C, synthesis and characterization, 133, 77 γ-Pr₂S₃, doped and undoped, band electronic structure study through LMTO-TB calculations, **128**, 197 Pr₂Sn₂O₇, structural and bonding trends, 130, 58 PrTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, 130, 277 SrPrO₃ perovskite, structure and magnetic properties, 132, 337 Pressure oxygen, effect on $\text{La}_2\text{NiO}_{4+\delta}$ excess oxygen concentration and electrical conductivity, 131, 275 Promethium Hg₂Ba₂PmCu₂O_{8-δ}, synthesis and structural and magnetic characterization, 132, 163 Protonic mobility in brushite and monetite, IR spectroscopic and neutron scattering studies, 132, 6 Pseudobrookite phases reduced, $Mg_{5-x}Nb_{4+x}O_{15-\delta}$ (1.14 $\leq x \leq$ 1.60), formation from MgO-Nb₂O₅-NbO, **134**, 76 Pseudo-hollandites Rb_{0.62}Cr₅Te₈, synthesis, crystal structure, and electronic band structures of $Rb_xCr_5Te_8$ phases, 131, 326 Pyrochlores $La_{2-x}Cd_xRu_2O_{7-\delta}$, synthesis and characterization, 129, 308 $Pb_2(M_{1.5}W_{0.5})O_{6.5}$ (M = Ti,Sn), surface segregation and oxygen vacancy ordering, 130, 81 A_2 Ru₂O_{7-y} (A = Bi,Pb,Tl,rare earth), metallic and nonmetallic properties, structural and electronic factors in, letter to editor, 131, 405 $Ln_2Sn_2O_7$ (Ln = Y, La, Pr, Nd, Sm-Lu), structural and bonding trends, **130,** 58 Pyrohydrolysis in fluoride-containing borosilicate glasses, OH absorption bands due to, removal. 130, 330 relationship to groutite and manganite: hydrogen bonding and Jahn- Teller distortion, 133, 486 aerosols, in synthesis of iron zircon pigments, 128, 102 spray, preparation of spinel zinc stannate thin films, 128, 305 Pyrolysis Q Quasicrystals Al-Pd-Re modulated photocurrent measurements, **133**, 224 photocurrent observations, **133**, 302 icosahedral, electronic properties, 133, 160 R Radiospectroscopic properties cubic BN, effect of chemically active media, 133, 292 Raman spectroscopy arcaine sulfate, 133, 423 Ba₂Cu_xZn_{1-x}WO₆ mixed crystals, cooperative Jahn-Teller effect in, 129, 117 Ba_{5-x}Sr_xNb₄O₁₅ microwave dielectric ceramic resonators, 131, 2 $Ba_3(VO_4)_2$ at high pressure, 132, 156 B₆O, Fourier transform spectra, **133**, 260 $(CH_3NH_3)_2M(II)(SO_4)_2 \cdot 6H_2O(M(II) = Cu,Zn,Ni), 133, 407$ $\text{EuB}_{6-x}C_x$ ($X \approx 0.1$), Fourier transform spectra, 133, 264 $HLnTiO_4$ and $HLnTiO_4 \cdot xH_2O$ (Ln = La,Nd,Sm,Gd), 130, 110 $MIn(MoO_4)_2$ and $MIn(WO_4)_2$ (M = Li, Na, K, Cs), 129, 287 IrSi₃P₃, 128, 142 LaB₆, Fourier transform spectra, 133, 264 $Na_2Cu(SO_4)_2 \cdot 2H_2O$, 133, 407 $NaLnTiO_4$ and $Na_2Ln_2Ti_3O_{10}$ (Ln = La, Nd, Sm, Gd), 130, 110 β -(NH₄)₂FeF₅, hydrogen bonding-induced NH₄⁺ ordering at low temperature, **131**, 189 $Ln_7O_6(BO_3)(PO_4)_2$ (Ln = La,Nd,Gd,Dy), 129, 45 RhSi₃P₃, 128, 142 SmB₆, Fourier transform spectra, 133, 264 $Sr_3(VO_4)_2$ at high pressure, 132, 156 TeO₂-BaO-TiO₂ glasses, 132, 411 Ramsdellite LiTi₂O₄, formation by heating-induced transformation of spinel struc- relationship to groutite and manganite: hydrogen bonding and Jahn-Teller distortion, 133, 486 and rutile, $\text{Li}_x\text{Ti}_3\text{O}_6$ intergrowth phase related to, synthesis and characterization, 129, 7 Rare earth elements Bi–Ln–V–O anionic conductors with δ-Bi₂O₃ fluorite-type structure (Ln = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), **134**, 219 $Ln_{0.5}A_{0.5}$ MnO₃ (Ln = rare earth; A = alkaline earth), charge ordering in, dependence on size of A-site cation, letter to editor, **129**, 363 50Na₂O-49P₂O₅-0.5Eu₂O₃-0.5CeO₂: fluorescent photosensitive glass for optical memory and fluorescence holography, **134**, 362 rare earth transition metal borides and their hydrides, low-temperature synthesis, 133, 145 Redox energy $\mathrm{Mn^{3+}/Mn^{2+}}$, in ambient and high-pressure structures of LiMnVO₄, 128, 267 Reduction $\alpha\text{-Fe}_2O_3$ aciculate ultrafine particles to Fe $_3O_4$, kinetics, 134, 248 Reflectivity β -rhombohedral boron, **133**, 129 Relaxation mechanisms rotation-induced, for external strains, application to boron-rich crystals, 133, 322 Renner-Teller effect for cyclic crystals with geminal model, 129, 174 Rhenium Al-Pd-Re quasicrystals modulated photocurrent measurements, 133, 224 photocurrent observations, 133, 302 Al_{92-x}Pd_xRe₈-type quasicrystals, electronic properties, **133**, 160 Ca₃ReO₆, crystal structure, 131, 305 Sm₂ReO₅, crystal structure and magnetic properties, **132**, 196 An_2Rh_2X (An = Pu,Am; X = In,Sn), synthesis, crystal chemistry, and physical properties, **134**, 138 R-Rh-B and R-Rh-B-C systems (R = rare earth), single crystal growth from molten copper flux, 133, 82 RRh_2B_2C (R = rare earth), synthesis and characterization, 133, 77 $RhSi_3P_3$, Raman study, 128, 142 Sr₃MgRhO₆, synthesis, crystal structure, and magnetic properties, 130, $SrRh_2P_2$, electronic structure, substitution effects, and comparison with superconducting $LuNi_2B_2C$, 130, 254 Rietveld analysis Cs₃Sb₂I₉ X-ray diffraction data: reconstructive phase transformation and kinetics, **134**, 319 $\text{LiCr}_y \text{Mn}_{2-y} \text{O}_4$ ($0 \le y \le 1$) structural modifications induced by electrochemical Li deintercalation, **132**, 372 Rochelle salt crystal structure, 131, 350 Rock salt defect nitrides $La_{1-x}Ca_xN_{1-x/3}$ (0 < x < 0.7) prepared from LaN and Ca_3N_2 , 129, 144 Li₃Cu₂SbO₆ with partially ordered structure, synthesis, 131, 115 Li₂MnO₃, electric and magnetic properties, **131**, 94 Rotation-induced relaxation mechanism for external strains, application to boron-rich crystals, 133, 322 RS-camphor low-temperature crystal structure, 134, 211 Rubidium RbBr· Me^{2+} Br₂·6H₂O (Me^{2+} = Co,Ni), crystallization and structure, **129.** 200 Rb₂Cr₂O(AsO₄)₂, preparation and crystal structure, **134**, 22 Rb_{0.62}Cr₅Te₈ pseudo-hollandite, synthesis, crystal structure, and electronic band structures of Rb_xCr₅Te₈ phases, **131**, 326 $RbCu_{7-x}S_4$, electrical resistivity anomalies and superlattice modulations, role of vacancy ordering, 134, 5 Rb₂Mo₂WO₅(PO₄)₃, interconnected tunnel structure, 130, 48 Rb₅VONb₁₄O₃₈, synthesis and crystal structure, 134, 10 Rb₄YbI₆, synthesis and crystal structure, **128**, 66 $RbZn_2(HPO_4)_2(H_2PO_4) \cdot 2H_2O$ and $RbZn(HPO_4)(H_2PO_4) \cdot H_2O$, syntheses and crystal structures, **134**, 148 Ruthenium BaRuO₃, preapared at ambient pressure and possessing four-layer hexagonal structure, crystal structure refinement, **128**, 251 $Ba_5Ru_{1.6}W_{0.4}Cl_2O_9$, 10-layer perovskite-related oxyhalide, crystal structure, 132, 407 CeRu₃B₂, heavy fermion superconductors, chemical bonding topology, 131, 394 CeRu₃Si₂, heavy fermion superconductors, chemical bonding topology, 131, 394 CeRu₄Sn₆, crystal structure, specific heat, and ¹¹⁹Sn Mössbauer spectroscopy, **134**, 326 $La_{2-x}Cd_xRu_2O_{7-\delta}$, pyrochlore oxides, synthesis and characterization, 129, 308 La₂IRu₂, condensed cluster phase, 129, 277 $La_{2-x}Sr_{2x}Cu_{1-x}Ru_xO_4$, linear Cu–O–Ru electronic interaction in two dimensions, 128, 169 Ru complex sensitizers of TiO₂ anatase nanopowders, crystal structure, 132. 60 Ru-Ge, Ru-Si, and Ru-Sn systems, binary compounds in, heat capacity and heat content measurements, 133, 439 A_2 Ru₂O_{7-y} (A = Bi,Pb,Tl,rare earth) pyrochlores, metallic and non-metallic properties, structural and electronic factors in, letter to editor, **131**, 405 URu₂Si₂, heavy fermion superconductors, chemical bonding topology, 131, 394 ### Rutile quadruple-rutile-type chain structure $Na_{0.875}Fe_{0.875}Ti_{1.125}O_4$, topotactic oxidation, 130, 184 and ramsdellite, $\text{Li}_x\text{Ti}_3\text{O}_6$ intergrowth phase related to, synthesis and characterization, 129, 7 ultrafine particles, transformation to anatase at negatively charged colloid surfaces, letter to editor, **132**, 447 S #### Samarium AlSmO₃, cation arrays in perovskite-type compounds, 128, 69 ${\rm Bi_{1-x}Sm_xO_{1.5}}$, ion-ordered phases, stability, thermal behavior, and crystal structure, **129**, 98 Bi-Sm-V-O anionic conductors with δ -Bi₂O₃ fluorite-type structure, 134, 219 Ca_{1-x}Sm_xMnO₃, electron-doped, CMR effect in, 134, 198 $Cu_r(SmS)_{1+\nu}(NbS_2)_2$, phase transition, **134**, 99 $Hg_2Ba_2SmCu_2O_{8-\delta}$ synthesis and structural and magnetic characterization, 132, 163 HSmTiO₄ and HSmTiO₄·xH₂O, structure and Raman spectra, 130, 110 $\text{La}_{1-x}\text{Sm}_x\text{TiO}_3$ (0 $\leq x \leq$ 1), magnetic and structural studies, letter to editor, 133, 583 NaSmTiO₄ and Na₂Sm₂Ti₃O₁₀, structure and Raman spectra, **130**, 110 SmB₄, polar and reticular microhardness anisotropy, **133**, 296 SmB_c compounds based on, magnetic excitation spectrum, effect of mixed-valences state, **133**, 230 FT Raman spectroscopy, 133, 264 polar and reticular microhardness anisotropy, 133, 296 in thin film technology, 133, 279 Sm₃Ga₅O₁₂ garnet, electron density study, **132**, 300 $SmMn_2O_5$, high-oxygen-pressure preparation, structural refinement, and thermal behavior, 129, 105 Sm₅Os₃C_{4-x}, preparation and crystal structure, 131, 49 $(Sm_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$, structural properties and oxygen stoichiometry, 133, 445 Sm₂ReO₅, crystal structure and magnetic properties, 132, 196 SmRh₃B, single crystal growth from molten copper flux, 133, 82 SmRh₄B₄, single crystal growth from molten copper flux, 133, 82 SmRh₂B₂C, synthesis and characterization, 133, 77 Sm₂Sn₂O₇, structural and bonding trends, 130, 58 SmTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277 ### Scandium Sc₂BC₂, bonding analysis, 133, 190 ScOOH, cation arrays, 131, 358 Second-harmonic generation electrically poled borophosphate glasses, effects of introduction of niobium or sodium oxides, **133**, 529 Seebeck coefficient $(LaMn_{1-x}Ti_x)_{1-y}O_3$ ($x \le 0.05$), **133**, 466 $Nd(Cr_{1-x}Ni_x)O_3$, **134**, 382 Selenidotellurates $\mathrm{Cs_4Te_xSe_{16-x}}$ (x=1,4) and $\mathrm{Cs_4Te_{9.74}Se_{13.26}}$, with ordered Se/Te rings and chains, methanolothermal design and structure, **134**, 364 ## Selenium BaNbSe₃, quasi-one-dimensional selenide, phase transitions, **132**, 188 BaNb₂Se₅, superconductivity, **132**, 188 $Cs_4Te_xSe_{16-x}$ (x = 1,4) and $Cs_4Te_{9.74}Se_{13.26}$, with ordered Se/Te rings and chains, methanolothermal design and structure, **134**, 364 M_3 Fe₂(SeO₃)₆·2H₂O (M = Mg,Co,Ni), synthesis, crystal structure, and IR and Mössbauer spectroscopy, **131**, 54 La₂Cu(SeO₃)₄, synthesis and crystal structure, 133, 572 SbCrSe₃ 1D ferromagnet, structure determination by HREM image analysis, 132, 257 Sb₂Te_{3-x}Se_x crystals, point defects in, 129, 92 MSe₄ (M = group 10, group 11), edge-sharing square planar units, transition metal compounds with, square planar to rectangular distortion in, 128, 181 Sr_{1-x}Ba_xZrSe₃ series, structural evolutions in, 130, 20 ZnSe, zinc blende crystals, linear electro-optic coefficient, **130**, 54 Semiconductors $(LaMn_{1-x}Ti_x)_{1-y}O_3$ ($x \le 0.05$), electrical transport in, 133, 466 SERS, see Surface-enhanced Raman scattering Sieve properties proton-exchanged LiMn₂O₄ spinels for Li⁺, 131, 84 Silicon AgI-Ag₂O-B₂O₃-SiO₂ system, reversible color changes in ion-conducting glasses prepared by microwave melting: structural implications, 131, 173 borosilicate glasses containing fluoride, OH absorption bands due to pyrohydrolysis in, removal, **130**, 330 $B_{12}P_2$ doped with, interband transitions and phonon spectra, **133**, 140 $Ca_3(Cr,Al)_2Si_3O_{12}$ garnets, electron density study, **132**, 432 CeCu₂Si₂, heavy fermion superconductors, chemical bonding topology, 131, 394 CeO₂/SiO₂ systems, spreading and phase transformations in, **131**, 121 CeRu₃Si₂, heavy fermion superconductors, chemical bonding topology, **131**, 394 CsTiSi₂O_{6.5} crystal structure, neutron and X-ray diffraction study, 130, 97 EXAFS and XANES studies, 129, 206 Cs₂TiSi₆O₁₅, crystal structure, **131**, 38 IrSi₃P₃, Raman study, 128, 142 La₆MgSi₂S₁₄, synthesis and structure, **131**, 399 Li₄SiO₄, superionic, vibrational spectra and energy characteristics, **134**, 232 NaAlO₂-NaAlSiO₄ system, cristobalite-related phases in, XRD and electron diffraction study, 131, 24 $Na_2MSi_4O_{10}$ (M = Co, Ni), magnetic behavior, 131, 335 Na₄[(TiO)₄(SiO₄)₃]·6H₂O, rhombohedrally distorted titanosilicate pharmacosiderite, synthesis and crystal structure, **134**, 409 Pd/CeO₂/SiO₂ systems, spreading and phase transformations in, 131, 121 PtSi₂P₂, synthesis and crystal structure, 133, 473 $PtSi_3P_2$, synthesis, crystal structure, and electrical resistivity, **133**, 473 $RhSi_3P_3$, Raman study, **128**, 142 Ru-Si systems, binary compounds in, heat capacity and heat content measurements, 133, 439 SiF₄, structural relationship to CuAl₂, 132, 151; erratum, 134, 431 Si₃N₄-BN composite ceramic, preparation, aminoboranes as BN source for, **133**, 164 $R_{6+x/3}Si_{11}N_{20+x}O_{1-x}$ (R = Y and Gd–Lu), preparation and crystal structures, 129, 312 SiO₂, incipient reaction with Ca(OH)₂ under moderate mechanical stressing, mechanisms: changes in short-range ordering, **130**, 284 ThCr₂Si₂-type transition metal compounds, LMTO band structure calculations, 130, 254 URu₂Si₂, heavy fermion superconductors, chemical bonding topology, 131, 394 YB₄₁Si_{1,2}, crystal structure, **133**, 11 YB₄₄Si_{1.0}, single crystal growth, **133**, 55 ZrSiO₄, iron-doped pigments, synthesis by pyrolysis of aerosols, **128**, 102 ZrSi_{0.7}Sb_{1.3}, and ZrSn_{0.4}Sb_{1.6} and ZrGeSb: family containing ZrSiStype and β -ZrSb₂-type compounds, **134**, 388 Sillen X1 structure, CaBiO₂Cl and SrBiO₂Cl disordered variants of, synthesis, 128, 115 Silver ${\rm Ag^+}$, electrochemical doping of oxide ceramics with ${\rm Ag-}\beta''$ - ${\rm Al_2O_3}$ ionic conductors, 128, 93 ${ m Ag}X_4$ (X = O,S,Se), edge-sharing square planar units, transition metal compounds with, square planar to rectangular distortion in, 128, 181 Ag₂Ce(H₂O)(NO₃)₅, structure and thermal decomposition, temperaturedependent X-ray powder diffraction study, **132**, 361 AgI-Ag₂O-B₂O₃-SiO₂ system, reversible color changes in ion-conducting glasses prepared by microwave melting: structural implications, **131**, 173 AgTaS₃, structure and electrical conductivity, 132, 389 Ag_{1.92}Te, transport properties at 160°C, **130**, 140 Ag₂TiO₃, synthesis and crystal structure, 134, 17 $Ag_{1.2}V_3O_8$, crystal structure: relationship to $Ag_2V_4O_{11-y}$ and interpretation of physical properties, **134**, 294 Ag₂VP₂O₈, structure and ionic conductivity, 130, 28 ions in solution, interaction with Cu₂Fe(CN)₆, **132**, 399 KAg₂, Laves phase, high-pressure synthesis, 130, 311 $Mn_{1-x-y}Ag_y\Phi V_{2-2x-y}Mo_{2x+y}O_6$, solid solutions, synthesis and study, 133, 545 Silver(I) 2,2-dimethylglutarate 2-D framework built from tetranuclear $Ag_4(2,2-dimethylglutarate)_2$ oligomeric unit, 134, 332 Single crystal growth doped rare earth manganate perovskites, letter to editor, **130**, 327 Sintering B₄C, carbon black as aid for, 133, 68 Sodium Ba₄CuNaO₄Cl₄, Cu(III) oxy-chloride, synthesis, structure, and electrical and magnetic properties, letter to editor, **129**, 360 Ca(PO₃)₂-CaB₄O₇-Na₂B₄O₇-Nb₂O₅, borophosphate glasses, synthesis and second-harmonic generation after poling treatment, **133**, 529 KNa(C₄H₄O₆)·4H₂O, structure, **131**, 350 Li₂Na(MoO)₂(PO₄)₃, synthesis and crystal structure, 129, 298 Na $^+$, electrochemical doping of oxide ceramics with Na- β'' -Al $_2$ O $_3$ ionic conductors, 128, 93 $NaAlO_2$ - $NaAlSiO_4$ system, cristobalite-related phases in, XRD and electron diffraction study, 131, 24 $NaCa_2M_2^{2+}(AsO_4)_3$ ($M^{2+} = Mg,Ni,Co$), cationic substitution effects on garnet–alluaudite polymorphism, **131**, 290 $NaCaCdMg_2(AsO_4)_3$, alluaudite-like structure, 131, 298 $NaCoPO_4$ polymorph with edge-sharing Co²⁺ octahedral chains, synthesis and characterization, **131**, 160 with trigonal bipyramidal Co²⁺ and tunnel structure, 129, 328 Na₂Cu(SO₄)₂·2H₂O, IR and Raman spectra, 133, 407 Na₃Eu(CO₃)₃, structural and optical studies, 132, 33 $\alpha\text{-NaFeO}_2,$ Ni $_{1+x}\text{Fe}_{2-2x/3}\text{O}_4$ obtained from, crystal and magnetic structures, 129, 123 $Na_{0.875}Fe_{0.875}Ti_{1.125}O_4$, topotactic oxidation of quadruple-rutile-type chain structure, **130**, 184 NaH₂PO₄·2H₂O, high microwave susceptibility: synthesis of crystalline and glassy phosphates with NASICON-type chemistry, **132**, 349 Na₃In₂(AsO₄)₃ alluaudite-like structure, 134, 31 hydrothermal synthesis and structure, 131, 131 NaIn(MoO₄)₂ and NaIn(WO₄)₂, vibrational characteristics, **129**, 287 Na₃In₂(PO₄)₃, hydrothermal synthesis and structure, 131, 131 NaMgF₃ perovskites, thermochemistry, 132, 131 NaMoO₂AsO₄, preparation and crystal structure, 133, 386 Na₃(MoO)₂(PO₄)₃ with intersecting tunnel structure, synthesis and crystal chemistry, **132**, 249 NaO_{0.44}C_{5.84}, graphite intercalation compound with sodium and peroxide, **131**, 282 $Na_3M(OH)(HPO_4)(PO_4)$ (M = Al,Ga), synthesis and chain structure, 128, 21 50Na₂O-49P₂O₅-0.5Eu₂O₃-0.5CeO₂: fluorescent photosensitive glass for optical memory and fluorescence holography, **134**, 362 $Na_2MSi_4O_{10}$ (M = Co, Ni), magnetic behavior, 131, 335 $Na_xTa_3N_5$ ($0 \le x \le 1.4$), synthesis and partial characterization, 132, 394 $NaLnTiO_4$ and $Na_2Ln_2Ti_3O_{10}$ (Ln = La,Nd,Sm,Gd), structure and Raman spectra, 130, 110 Na₄[(TiO)₄(SiO₄)₃]·6H₂O, rhombohedrally distorted titanosilicate pharmacosiderite, synthesis and crystal structure, **134**, 409 Na₂Ti₂Sb₂O layered tetragonal compound, phase transition and spin gap behavior in, **134**, 422 Na_{0.10}WO₃ bronze with distorted perovskite structure, X-ray and electron diffraction study. **133**, 479 γ - Ln_2S_3 (Ln = La, Ce, Pr, Nd) doped with, band electronic structure study through LMTO-TB calculations, **128**, 197 Sol-gel synthesis alumina doped with La and Ce, 128, 161 aluminum titanate, high-temperature phase formation in, FTIR study, 131, 181 BaTiO₃ thin films using glycolate precursor, **131**, 43 Fe₃O₄ thin films, **128**, 87 $\rm La_2 CuO_{4+\delta}$ electrochemically oxidized particles prepared by, structural characterization, 131, 246 $Sn_2P_2S_6$ at room temperature, **129**, 157 Solid oxide galvanic cell determination of molar Gibbs energy of formation of BaMo₂O₇(s) using, 134, 416 Solid solutions in B₆O–B₄C system, synthesis at high pressure and temperature electron energy-loss spectroscopy, **133**, 365 preparation and characterization, **133**, 356 Ca_3N_2 and LaN, formation of defect rock salt nitrides $La_{1-x}Ca_xN_{1-x/3}$, 129, 144 CrZr_{0.75}Nb_{0.25}F₆, antiferrodistortive order in, 131, 231 LaFe_xNi_{1-x}O₃, crystal structure refinement and stability, 133, 379 $Mn_{1-x-y}Ag_y\Phi V_{2-2x-y}Mo_{2x+y}O_6$, synthesis and study, 133, 545 supersaturated, TiB_2 – CrB_2 – WB_2 , phase formation during annealing of, 133, 25 Solventothermal synthesis $Cs_4Te_xSe_{16-x}$ (x=1,4) and $Cs_4Te_{9.74}Se_{13.26}$ with ordered Se/Te rings and chains, 134, 364 Specific heat CeRu₄Sn₆, 134, 326 Spillover technique modification of blue potassium molybdenum bronze, 128, 256 pinels $In_{16}Fe_8S_{32}$, chemically lithiated, structural and local environment modifications, 134, 238 $\text{LiCr}_y \text{Mn}_{2-y} \text{O}_4$ (0 $\leq y \leq$ 1), structure modifications induced by electrochemical Li deintercalation, Rietveld analysis, **132**, 372 Li_xIn₁₆Fe₈S₃₂: structure and local environment after chemical lithium insertion, **134**, 238 LiMn₂O₄ charge–discharge process, in situ XAFS study, letter to editor, 133, 586 phases coexisting with $\rm Li_2MnO_3$, stoichiometry, XRD and EPR studies, 128, 80 proton-exchanged, surface structure and ${\rm Li}^+$ sieve properties, 131, 84 and related Li-rich spinel, electric and magnetic properties, 131, 94 Verwey-type transition and magnetic properties, 131, 138 X-ray absorption studies, letter to editor, 128, 326 $\text{Li}_4 \text{Mn}_5 \text{O}_{12}$, structure refinement with neutron and X-ray powder diffraction data, 130, 74 Li₂O-TiO₂-Fe₂O₃, cation distribution, **134**, 170 LiTi₂O₄, transformation to ramsdellite upon heating, 132, 382 NiMn₂ $\square_{3\delta/4}$ O_{4+ δ}, nonstoichiometric, wide-angle X-ray scattering study, **129.** 271 Zn_{2-x}Sn_{1-x}In_{2x}O_{4-δ}, transparent conducting properties, **134**, 192 Zn₂SnO₄ thin films, spray pyrolysis preparation and humidity sensing characteristics, **128**, 305 Spin gap behavior Na₂Ti₂Sb₂O layered tetragonal compound, 134, 422 Spin gap state CaV₂O₅, letter to editor, **127**, 359; addendum, **129**, 367 Spin state Ni^{3+} ions, effect on electrical properties of $Nd(Cr_{1-x}Ni_x)O_3$, 134, 382 Spray pyrolysis preparation of spinel zinc stannate thin films, 128, 305 Stability $\text{Bi}_{1-x}Ln_x\text{O}_{1.5}$ (Ln = Sm-Dy), ion-ordered phases, **129**, 98 K₂(VO)₂P₄O₁₃ in oxygen atmosphere, 132, 41 LaFe_xNi_{1-x}O₃ solid solutions, **133**, 379 NbS₂-IrS₂ system 1T structure, **129**, 242 RRh_2B_2C (R = rare earth), 133, 77 Stacking diamond-type, octahedral units of antiprism, (H₃O)Yb₃F₁₀·H₂O prepared by chimie douce synthesis, **128**, 42 geometrical unit of polyhedra UGP, in description of complex structures, 128, 52 Stoichiometry LiMn₂O₄ and Li₂MnO₃ coexisting phases, XRD and EPR studies, 128, oxygen in $(Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta}$ and $(R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2Nb$ $O_{10-\delta}$ (R = Nd,Sm,Eu), 133, 445 Stretching vibrations symmetric, two-coordinate oxygen bridges in negative thermal expansion of $ZrV_xP_{2-x}O_7$ and AW_2O_8 (A=Zr,Hf) at high temperature, letter to editor, **129**, 160 Strontium AlSr₂YCu₂O₇, structural order/disorder in, 133, 434 $Ba_{2-x}Sr_xDyTaO_6$ (x = 0,1,2), development and dielectric properties, 133, 522 $Ba_{5-x}Sr_xNb_4O_{15}$, microwave dielectric ceramic resonators, vibrational analysis, 131, 2 (Ba,Sr)_{1+y}UO_{3+x}, perovskite-related phases, structure and thermodynamics, **131**, 341 $Bi_{2-x}Pb_xSr_{1.5}Ca_{1.5}Mn_2O_{9-\delta}$ with 2212 structure, synthesis and crystal chemistry, **132**, 420 Bi_{0.267}Pr_{0.733}SrO_{3-δ}, crystal structure and magnetic properties, neutron diffraction studies, **132**, 182 Bi₂Sr₂CuO₆, antiferromagnetic order, 133, 372 Bi₁₂Sr₁₈Fe₁₀O₅₂, HREM study: collapsed structure related to 2212 structure, **129**, 214 $Bi_{1-x}Sr_xMnO_3$, magnetic and electrical properties, 132, 139 La_{0.6}Sr_{0.4}Co_{1-y}Fe_yO_{3- δ} (y=0-0.6), thermodynamic quantities and defect structure, high-temperature coulometric titration studies, **130**, 302 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$, Coulometric titration at high temperature: electronic band structure effect on nonstoichiometry behavior, **133**, 555 $La_{2-x}Sr_xCuO_{4-\delta}$, defect chemistry: oxygen nonstoichiometry and thermodynamic stability, **131**, 150 $\text{La}_{2-x}\text{Sr}_{2x}\text{Cu}_{1-x}M_x\text{O}_4$ (M=Ti,Mn,Fe,Ru), linear Cu–O–M electronic interaction in two dimensions, **128**, 169 $\text{La}_{1-x}\text{Sr}_x\text{FeO}_3$, nanocrystalline material sensitivity to ethanol, effect of Sr content, 130, 152 La-Sr-Mn-O system, phase equilibria, 134, 38 $\text{Li}_3\text{Sr}_2M\text{N}_4$ (M=Nb,Ta), synthesis and structure, 130, 1 Pb₂Sr₂Cu₂TaO₈Cl, layered cuprate with hematophanite structure, synthesis and characterization, **130**, 154 $(R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$ (R=Nd,Sm,Eu), structural properties and oxygen stoichiometry, **133**, 445 (Pr_{1.5}Ce_{0.5})Sr₂Cu₂TaO_{10-δ}, structural properties and oxygen stoichiometry, **133**, 445 $Pr_{2-x}Sr_xNiO_{4+\delta}$, oxygenation and electrical properties, 131, 167 ${\rm Sr^2}^+$, electrochemical doping of oxide ceramics with ${\rm Sr}$ - ${\beta''}$ - ${\rm Al_2O_3}$ ionic conductors, 128, 93 SrB₆, electronic structure calculations, 133, 51 $Sr_{1-x}Ba_xZrSe_3$ series, structural evolutions in, 130, 20 $Sr_{10-n/2}Bi_nFe_{20}O_m$ (n = 4,6,8,10), with high oxygen permeability, synthesis, **130**, 316 SrBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115 $(Sr,Ca)_4Cu_6O_{10}$ three-leg-ladder compound, X-ray single-crystal structure analysis, **134**, 427 Sr₃Cu₂Fe₂O₅S₂, crystal structure, **134**, 128 Sr_2CuMO_3S (M = Cr, Fe, In), crystal structure, 134, 128 $Sr_2Cu_2MO_2S_2$ (M = Mn,Zn), synthesis and properties, 130, 319 $Sr_{3-x}A_xFe_2O_7$ ($x \le 0.4$; A = Ba,La), electronic state, magnetism, and electrical transport behavior, 130, 129 Sr₃MgMO₆ (M = Pt,Ir,Rh), synthesis, crystal structure, and magnetic properties, **130**, 35 $Sr_4Mn_3(B_{1-x}Mn_x)O_{10}$, related to cubic perovskite structure, synthesis and characterization, **134**, 395 SrO-CaO-CuO system under high pressure, compounds and phase relations, 132, 274 SrPrO₃ perovskite, structure and magnetic properties, 132, 337 SrRh₂P₂, electronic structure, substitution effects, and comparison with superconducting LuNi₂B₂C, 130, 254 Sr₂SnO₄, Pr⁴⁺ doped in, EPR spectra, 130, 250 Sr₃(VO₄)₂, high-pressure behavior, **132**, 156 substitution in superconducting $RBa_2Cu_4O_8$ (R = Gd,Ho), 128, 310 Tl₅Ba₃Sr₅Cu₃O₁₉, 1201 shear like phase, **128**, 150 $(Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}$ (0 $\leq x \leq$ 2) with Tl-2212-type structure, preparation and characterization, **132**, 308 $Tl_{1-x}Sr_2Cu_{1-y}M_{x+y}O_{5-\delta}$ (M = Nb, Ta, W), 1201-based cuprate, cation ordering in, **132**, 113 Structure alluaudite-like NaCaCdMg₂(AsO₄)₃, 131, 298 Na₃In₂(AsO₄)₃, **134**, 31 AlSr₂YCu₂O₇ order/disorder, 133, 434 β -alumina, BaO–Al₂O₃–AlN system with, analysis, **129**, 66 amorphous boron, **133**, 211 Ba-Cu-C-O system, equivalence of CO₃ and CuO_x groups, 129, $Ba_4CuMO_4Cl_4$ (M=Li,Na), Cu(III) oxy-chlorides, letter to editor, 129, 360 Ba₈₈Ni₈₇O₁₅₆(CO₃)₁₉, 128, 220 Ba₁₁Pd₁₁O₂₀(CO₃)₂, 128, 220 $(Ba,Sr)_{1+y}UO_{3+x}$, perovskite-related phases, 131, 341 BaTiO₃-LaAlO₃ and BaTiO₃-LaAlO₃-LaTi_{3/4}O₃ systems, 129, 223 Ba_{1+v}UO_{3+x}, perovskite-related phases, **131**, 341 Ba₃(VO₄)₂, changes at high pressure, 132, 156 B₄C-C injection molded ceramics, microstructure, 133, 68 BN, cubic, effect of chemically active media, 133, 292 B_6O_{1-x} high-strength compounds, 133, 88 boron carbide, B-C-Al compounds with, IR active phonon spectra, 133, Ba₆Cu₁₂Fe₁₃S₂₇, synthesis and crystal structure, 128, 62 B₁₂S_{2-x}, high-strength compounds, structure and bulk modulus, 133, $B_{12}S_{2-x}$ high-strength compounds, 133, 88 $Ca_{1-x}La_xS$ (x = 0-0.3), **131**, 101 $Ca_{1-x}La_xS$ (x = 0-0.3), structural and luminescence properties, 131, 101 collapsed, related to 2212 structure, $Bi_{12}Sr_{18}Fe_{10}O_{52}$, 129, 214 $(CH_3NH_3)_2M(II)(SO_4)_2 \cdot 6H_2O$ (M(II) = Cu,Zn,Ni), IR and Raman convex, bare boron clusters, 133, 182 spectra, 133, 407 C₂₉H₃₀N₅O₄S₂Ru, crystal structure, 132, 60 crystal, see Crystal structure CuAl₂, relationship to SiF₄, 132, 151; erratum, 134, 431 Cr₂S₃, ammonolysis: synthesis of CrN, 134, 120 1,10-decanedicarboxylic acid/urea inclusion compound, temperature-[Cu(II)(6-mercaptopurinolate²⁻)]_n, magnetic study, 132, 78 $ACu_{7-x}S_4$ (A = Tl,K,Rb), electrical resistivity anomalies and superdependent properties, 128, 273 electronic, see Electronic structure lattice modulations, role of vacancy ordering, 134, 5 electronic band, see Electronic band structure $Cu_x(MS)_{1+y}(NbS_2)_2$ (M = Ce,Sm), phase transition, 134, 99 hematophanite, Pb₂Sr₂Cu₂TaO₈Cl layered cuprate, **130**, 154 In₁₆Fe₈S₃₂ spinel, chemically lithiated, structural and local environment (H₃O)Yb₃F₁₀· H₂O prepared by chimie douce synthesis, ab initio determodifications, 134, 238 mination, 128, 42 La₆MgGe₂S₁₄, synthesis and structure, 131, 399 $HLnTiO_4$ and $HLnTiO_4 \cdot xH_2O$ (Ln = La,Nd,Sm,Gd), 130, 110 La₆MgSi₂S₁₄, synthesis and structure, 131, 399 Na₂Cu(SO₄)₂·2H₂O, IR and Raman spectra, 133, 407 incommensurate, L-Ta₂O₅-type phases in Ta₂O₅-WO₃ system, 126, 208; erratum, 129, 368 NbS₂-IrS₂ system, 1T structure stability, **129**, 242 In₁₆Fe₈S₃₂ spinel, chemically lithiated, **134**, 238 NiCr₂S₄, structure and magnetism, powder neutron diffraction study, In₅Mo₁₈O₂₈, HREM real-structure study, 130, 290 **134.** 110 ion-conducting glasses prepared by microwave melting, implications of (3PbO·PbSO₄·H₂O), crystal structure, **132**, 173 reversible color changes, 131, 173 MPd_3S_4 bronzes (M = La,Nd,Eu), crystal structure and electrical con- $La_{2-x}Cd_xRu_2O_{7-\delta}$ pyrochlore oxides, **129**, 308 ductivity, 129, 1 $La_{1-x}Sm_xTiO_3$ (0 $\leq x \leq 1$), letter to editor, 133, 583 γ - Ln_2S_3 (Ln = La, Ce, Pr, Nd), doped and undoped, band electronic struc- $\text{LiCr}_{y}\text{Mn}_{2-y}\text{O}_{4}$ ($0 \le y \le 1$), modifications induced by electrochemical Li ture study through LMTO-TB calculations, 128, 197 deintercalation, Rietveld analysis, 132, 372 MS_4 (M = group 10, group 11), edge-sharing square planar units, Li₂Fe₂(MoO₄)₃, weak ferromagnetic ground state structure, **130**, 147 transition metal compounds with, square planar to rectangular LiMn₂O₄ surface of proton-exchanged spinel, 131, 84 distortion in, **128**, 181 Sb₂S₃-As₂S₃-Tl₂S glasses, ¹²¹Sb Mössbauer spectroscopy, **133**, 458 Li_{0.5-3x}Nd_{0.5+x}TiO₃ perovskites, microstructural study, **128**, 97 Magneli phases, translational disorder generated by oriented defects in, Sn₂P₂S₆, synthesis at room temperature, **129**, 157 **131,** 215 Sr₃Cu₂Fe₂O₅S₂, crystal structure, 134, 128 magnetic, see Magnetic structure Sr_2CuMO_3S (M = Cr, Fe, In), crystal structure, 134, 128 $Mn_7Sb_4(\mu_5-O)_2(\mu_4-O)_2(\mu_3-OEt)_2(\mu-OEt)_{16}(HOEt)_2$, 134, 312 $Sr_2Cu_2MO_2S_2$ (M = Mn,Zn), synthesis and properties, 130, 319 NaO_{0.44}C_{5.84} graphite intercalation compound with sodium and perox-TiS₂, ammonolysis: synthesis of TiN, 134, 120 ide, 131, 282 VS₂, ammonolysis: synthesis of VN, **134**, 120 $NaLnTiO_4$ and $Na_2Ln_2Ti_3O_{10}$ (Ln = La, Nd, Sm, Gd), 130, 110 [Zn-Cr-SO₄] lamellar double hydroxides, selective synthesis, 130, 66 NbS₂-IrS₂ system, 1T structure stability, **129**, 242 ZnS, zinc blende crystals, linear electro-optic coefficient, 130, 54 NiAs-Ni₂In-related, in Mn-Sn system, 129, 231 Superconductivity Ni-6 mass% B-58.6 mass% Mo-10 mass% X (X = V, Fe, Co,BaNb₂Se₅, 132, 188 Ti,Mn,Zr,Nb,W), high-strength boride base hard material microchemical geminal charge transfer, vibronic degeneracy effects, and dopstructure, 133, 243 ing excitons in, 129, 174 RNi_2B_2C (R = Tm,Er), T_C , effects of Pd, Pt, and Co dopants, 133, 5 nuclear, U₃Ga₂Ge₃, neutron powder diffraction study, 131, 72 ABO₄, cation sublattice and coordination polyhedra in, 129, 82 $(R_{1-x}, Pr_x)Ba_4Cu_7O_{14+\delta}$ (R = Nd,Eu,Tm), **132**, 73 oxyhydroxides of trivalent metals, cation array of, 131, 358 quaternary borocarbides, 133, 169 $(R_{1-x}, Pr_x)Ba_4Cu_7O_{14+\delta}$ (R = Nd,Eu,Tm), 132, 73 ThCr₂Si₂-type transition metal compounds, 130, 254 $(R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$ (R = Nd,Sm,Eu), 133, 445 Superconductors $(Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta}$, 133, 445 $RBa_2Cu_4O_8$ (R = Gd,Ho), Sr substitution in, 128, 310 $Pr_{1-x}K_xMnO_3$ perovskites (x = 0-0.15), **132**, 98 heavy fermion, chemical bonding topology, 131, 394 ramsdellite and rutile, Li_xTi₃O₆ intergrowth phase related to, synthesis thin film, barium rare-earth antimonates suitable as substrates for, and characterization, 129, 7 characterization, 128, 247 rock salt, partially ordered, Li₃Cu₂SbO₆ with, synthesis, 131, 115 YBa₂Cu₃O_v, electrochemical doping with $M-\beta''$ -Al₂O₃ ionic conductors, SiF₄, relationship to CuAl₂, **132**, 151; erratum, **134**, 431 **128.** 93 $YBa_2Cu_3O_{7-\delta}$, substrates $Ba_{2-x}Sr_xDyTaO_6$ (x = 0,1,2) for, developspherical, bare boron clusters, 133, 182 $Sr_3(VO_4)_2$, changes at high pressure, 132, 156 ment and dielectric properties, 133, 522 TeO₂-BaO-TiO₂ glasses, 132, 411 Superionics TiB₂ PVD coatings, 133, 117 Li₄SiO₄ and Li₄GeO₄, vibrational spectra and energy characteristics, $(Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}$ (0 \leq x \leq 2), Tl-2212-type structure, **132**, 308 134, 232 transition metal compounds of edge-sharing square planar units MX_4 , Superlattice reflections in $ACu_{7-x}S_4$ (A = Tl,K,Rb), role of vacancy ordering, 134, 5 square planar to rectangular distortion in, 128, 181 tunnel, see Tunnel structure Surface-enhanced Raman scattering YB₆₆(100) surface, **133**, 31 arcaine sulfate, 133, 423 ZrSi_{0.7}Sb_{1.3}, ZrSn_{0.4}Sb_{1.6}, and ZrGeSb, 134, 388 Surfaces Cr₂O₃ microcrystals, chemical behavior of Sn dopant atoms on, Möss-AgTaS₃, structure and electrical conductivity, 132, 389 bauer study, 132, 284 negatively charged colloid, transformation of ultrafine rutile particles to anatase at, letter to editor, 132, 447 $Pb_2(M_{1.5}W_{0.5})O_{6.5}(M = Ti,Sn)$ defect pyrochlores, properties, 130, 81 $YB_{66}(100)$, structure and chemistry, 133, 31 Synthesis, see also Hydrothermal synthesis; Sol-gel synthesis Ag₂TiO₃, 134, 17 AlN, by microwave techniques, 130, 266 $[Al_3P_4O_{16}]^{3-} \cdot 3[CH_3CH_2NH_3]^+$, nonaqueous preparation, 129, 37 2-amino-5-nitropyridinium chloride nonlinear optical materials, 129, 22 An_2T_2X (An = Pu,Am; T = Co,Ir,Ni,Pd,Pt,Rh; X = In,Sn), 134, 138 $B_0 X_0 (X = Cl, Br, I), 133, 59$ BaCuB₂O₅, noncentrosymmetric pyroborate, 129, 184 Ba₂Cu₃Cl₂O₄, **124**, 319; comment, **130**, 161 Ba₆Cu₁₂Fe₁₃S₂₇, **128**, 62 $Ba_4CuMO_4Cl_4$ (M = Li,Na), Cu(III) oxy-chlorides, letter to editor, 129, BaFe₂O₄ and BaFe₁₂O₁₉ particles using combustion method, 134, 227 BaGe₂, 133, 501 Ba₆Mn₂₄O₄₈ with composite tunnel structure, 132, 239 Ba₈₈Ni₈₇O₁₅₆(CO₃)₁₉, **128**, 220 Ba₁₁Pd₁₁O₂₀(CO₃)₂, **128**, 220 $Ba_{2-x}Sr_xDyTaO_6$ (x = 0,1,2), **133**, 522 in B-C-N-O system at high pressure and temperature electron energy-loss spectroscopy, 133, 365 materials prepared by, 133, 356 $Bi_{2-x}Pb_{x}Sr_{1} {}_{5}Ca_{1} {}_{5}Mn_{2}O_{9-\delta}$ with 2212 structure, **132**, 420 CaBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115 Ca(PO₃)₂-CaB₄O₇-Na₂B₄O₇-Nb₂O₅ borophosphate glasses, 133, 529 Cd₈As₇Cl: pnictidohalide with new structure type, **134**, 282 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)]$, 128, 318 CrN, from ammonolysis of Cr₂S₃, 134, 120 CrWN₂, 128, 185 crystalline and glassy phosphates with NASICON-type chemistry, using high microwave susceptibility of NaH₂PO₄·2H₂O, 132, 349 $CsMo_6O_{10}(Mo_2O_7)(PO_4)_4$, 128, 233 $Cs_4Te_xSe_{16-x}$ (x = 1,4) and $Cs_4Te_{9.74}Se_{13.26}$ by methanolothermal reaction, 134, 364 Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)] two-dimensional solid with pillared layers, 132, 144 $Ln_3Cu_4P_4O_2$ (Ln = La,Ce,Nd), **129**, 250 doped rare earth manganate perovskite crystals using fused salt electrolysis, letter to editor, 130, 327 $M_3 \text{Fe}_2(\text{SeO}_3)_6 \cdot 2\text{H}_2\text{O} \ (M = \text{Mg,Co,Ni}), 131, 54$ Fe_4W_2N with unique η -carbide structure, 134, 302 (Fe_{0.8}W_{0.2})WN₂, 131, 374 GaPO₄ thin films, 134, 91 $Hg_2Ba_2LnCu_2O_{8-\delta}$ (Ln = Nd-Gd,Dy-Lu), 132, 163 HoMnO₃ with metastable perovskite-type structure, 129, 334 (H₃O)Yb₃F₁₀·H₂O by chimie douce route, **128**, 42 $In_2Ba_2CuO_{6-\delta}$ layered cuprate, 131, 177 KAg₂ Laves phase at high pressure, **130**, 311 $KAl(HPO_4)_2 \cdot H_2O$, 132, 47 K₅In₅Ge₅As₁₄ layered materials, 130, 234 K₈In₈Ge₅As₁₇ layered materials, **130**, 234 K₂(VO)₂P₄O₁₃ with tunnel structure, 132, 41 $La_{2-x}Cd_xRu_2O_{7-\delta}$ pyrochlore oxides, **129**, 308 LaMnO_{3+ δ} by firing gels using citric acid, **129**, 60 milling, letter to editor, 132, 443 Li₃AlN₂, by microwave techniques, **130**, 266 La_2IZ_2 (Z = Fe,Co,Ru,Os) condensed cluster phases, 129, 277 lanthanum molybdates with La:Mo ratio of 1:1 by high-energy ball La₂Cu(SeO₃)₄, **133**, 572 La₆MgGe₂S₁₄, **131**, 399 La₆MgSi₂S₁₄, **131**, 399 Li₃Cu₂SbO₆ with partially ordered rock salt structure, 131, 115 Li₃FeN₂, by microwave techniques, 130, 266 Li₃Mo₃O₅(PO₄)₃ with bidimensional connection of MoO₆ octahedra, 133, 391 Li(Mo,W)₂O₃(PO₄)₂ with intersecting tunnel structure, **128**, 215 Li₂Na(MoO)₂(PO₄)₃, 129, 298 Li₂Pd₃B and Li₂Pt₃B with boron in octahedral position, 133, 21 $\text{Li}_3\text{Sr}_2M\text{N}_4 (M = \text{Nb},\text{Ta}), 130, 1$ Li₅TiN₃, by microwave techniques, 130, 266 Li_{0.74}Ti₃O₆, 129, 7 $[Mg_{0.174}Ga_{0.256}(OH)_2](CO_3)_{0.134} \cdot mH_2O$, 131, 78 $Mn_{1-x-y}Ag_y\Phi V_{2-2x-y}Mo_{2x+y}O_6$ solid solutions, 133, 545 $Mn_7Sb_4(\mu_5-O)_2(\mu_4-O)_2(\mu_3-OEt)_2(\mu-OEt)_{16}(HOEt)_2$, **134,** 312 NaCoPO₄ polymorph with edge-sharing Co²⁺ octahedral chains, 131, 160 with trigonal bipyramidal Co²⁺ and tunnel structure, 129, 328 Na₃(MoO)₂(PO₄)₃ with intersecting tunnel structure, 132, 249 NaO_{0.44}C_{5.84} graphite intercalation compound with sodium and peroxide, 131, 282 $Na_3M(OH)(HPO_4)(PO_4)$ (M = Al,Ga), 128, 21 50Na₂O-49P₂O₅-0.5Eu₂O₃-0.5CeO₂: fluorescent photosensitive glass for optical memory and fluorescence holography, 134, 362 $Na_xTa_3N_5$ (0 $\leq x \leq$ 1.4), **132**, 394 N(CH₃)₄·Zn(H₂PO₄)₃, molecular cluster, 131, 363 N(CH₃)₄·Zn(HPO₄)(H₂PO₄), open framework phase built up from low-density 12-ring topology, 131, 363 NH₂CH=NH₂SnI₃ cubic perovskite and related systems, **134**, 376 [NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganicorganic layers, 132, 229 $[NH_4]^+[(Sn_3O)_2(PO_4)_3]^-$, **134**, 207 $(NH_4)_2[(Ti_3O_2)(HPO_4)_2(PO_4)_2], 132, 213$ oxynitrides in ZrO2-rich part of Ca-Zr-O-N and Mg-Zr-O-N systems, **128**, 282 Pb₂Sr₂Cu₂TaO₈Cl layered cuprate with hematophanite structure, 130, 154 $(R_{1-x}Pr_x)Ba_4Cu_7O_{14+\delta}$ (R = Nd,Eu,Tm) at high pressure, 132, 73 Pr₂INi₂, Pr₄I₅Ni, and Pr₃I₃Os condensed cluster phases, **129**, 277 (Pr/La)Co(CN)₆·5H₂O mixed cationic systems, 129, 12 PtSi₂P₂ and PtSi₃P₂, 133, 473 rare earth transition metal borides and their hydrides at low temperature, 133, 145 Rb_{0.62}Cr₅Te₈ pseudo-hollandite, 131, 326 Rb₅VONb₁₄O₃₈, 134, 10 Rb₄YbI₆, 128, 66 $RbZn_2(HPO_4)_2(H_2PO_4) \cdot 2H_2O$ and $RbZn(HPO_4)(H_2PO_4) \cdot H_2O$, 134, RRh_2B_2C (R = rare earth), 133, 77 Sn(O₃PCH₂CH₃) layered phase at room temperature, 132, 438 $Sr_{10-n/2}Bi_nFe_{20}O_m$ (n = 4,6,8,10), Co-free oxides with high oxygen permeability, 130, 316 SrBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115 $Sr_2Cu_2MO_2S_2$ (M = Mn,Zn), 130, 319 Sr_3MgMO_6 (M = Pt,Ir,Rh), 130, 35 Sr₄Mn₃(B_{1-x}Mn_x)O₁₀ related to cubic perovskite structure, 134, TeMo₅O₁₆ two-dimensional conductor, **129**, 303 $LnTh_2F_{11}$ (Ln = La-Lu, Y), metastable series with cationic and anionic disorder, 130, 277 by ammonolysis of TiS₂, 134, 120 by microwave techniques, 130, 266 $[Ti_2O(PO_4)_2(H_2O)_2]$, 132, 213 $[Ti_3(PO_4)_4(H_2O)_2] \cdot NH_3$, 132, 213 Tl₅Ba₃Sr₅Cu₃O₁₉, 1201 shear like phase, **128**, 150 $(Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}~(0 \le x \le 2)$ with Tl-2212-type structure, 132. 308 $Tl_{1-x}Sr_2Cu_{1-y}M_{x+y}O_{5-\delta}$ (M = Nb, Ta, W), 1201-based cuprate, 132, 113 VN by ammonolysis of VS₂, **134**, 120 by microwave techniques, 130, 266 W₅As_{2.5}P_{1.5} with one-dimensional vertex-linked W₆ cluster, 131, 310 YBa₂Cu₃O_{6+x}, orthorhombic, dependence of lattice parameters on oxygen content, 134, 356 YMnO₃ with metastable perovskite-type structure, 129, 334 [Zn-Cr-SO₄] lamellar double hydroxides, 130, 66 ZrSi_{0.7}Sb_{1.3}, ZrSn_{0.4}Sb_{1.6}, and ZrGeSb, **134**, 388 ### Т #### Tantalum AgTaS₃, structure and electrical conductivity, 132, 389 $Ba_{2-x}Sr_xDyTaO_6$ (x = 0,1,2), development and dielectric properties, 133, 522 Ba₅Ta₄O₁₅, luminescence, **134**, 187 Li₃Sr₂TaN₄, synthesis and structure, 130, 1 $Na_xTa_3N_5$ (0 $\le x \le 1.4$), synthesis and partial characterization, 132, 394 Pb₂Sr₂Cu₂TaO₈Cl, layered cuprate with hematophanite structure, synthesis and characterization, **130**, 154 $(Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta}$, structural properties and oxygen stoichiometry, 133, 445 Ta₂O₅-WO₃ system, incommensurate structures of *L*-Ta₂O₅-type phases in, **126**, 208; *erratum*, **129**, 368 $Tl_{1-x}Sr_2Cu_{1-y}Ta_{x+y}O_{5-\delta}$, 1201-based cuprate, cation ordering in, **132**, 113 ### Tellurium Ag_{1.92}Te, transport properties at 160°C, **130**, 140 $Cs_4Te_xSe_{16-x}$ (x = 1,4) and $Cs_4Te_{9.74}Se_{13.26}$, with ordered Se/Te rings and chains, methanolothermal design and structure, **134**, 364 Rb_{0.62}Cr₅Te₈ pseudo-hollandite, synthesis, crystal structure, and electronic band structures of Rb_xCr₅Te₈ phases, **131**, 326 $Sb_2Te_{3-x}Se_x$ crystals, point defects in, 129, 92 $TeMo_5O_{16}$, two-dimensional conductor, synthesis and crystal structure, 129, 303 TeO₂-BaO-TiO₂ glasses, structural and nonlinear optical characterizations, **132**, 411 ZnTe, zinc blende crystals, linear electro-optic coefficient, 130, 54 TEM, see Transmission electron microscopy Temperature effects 1,10-decanedicarboxylic acid/urea inclusion compound structure, 128, La₂NiO_{4+δ} excess oxygen concentration and electrical conductivity, **131**, 275 ### Terbium Al₅Tb₃O₁₂, cations arrays in garnet-type compounds, 128, 69 $Bi_{1-x}Tb_xO_{1.5}$, ion-ordered phases, stability, thermal behavior, and crystal structure, **129**, 98 Bi-Tb-V-O anionic conductors with δ -Bi₂O₃ fluorite-type structure, Cs₂KTbCl₆, crystal structure by powder x-ray diffraction, 132, 1 Li₈TbO₆, magnetic susceptibility and EPR spectra, 128, 228 TbB₄, polar and reticular microhardness anisotropy, 133, 296 TbB₆, incongruently melting, single crystal growth and properties, 133, Tb₄C₅, crystal structure, 132, 294 Tb₃Ga₅O₁₂ garnet, electron density study, 132, 300 TbOOH, cation arrays, 131, 358 TbRh₂B₂C, synthesis and characterization, 133, 77 $Tb_{6+x/3}Si_{11}N_{20+x}O_{1-x}$, preparation and crystal structure, 129, 312 Tb₂Sn₂O₇, structural and bonding trends, 130, 58 TbTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277 Tetranuclear silver cluster $Ag_4(2,2-dimethylglutarate)_2$, 2-D framework built from, 134, 332 Thallium BaTl_{0.5}Sb_{0.5}O₃, ordered perovskite, structural analysis, letter to editor, 128, 323 Sb₂S₃-As₂S₃-Tl₂S glasses, ¹²¹Sb Mössbauer spectroscopy, **133**, 458 Tl₅Ba₃Sr₅Cu₃O₁₉, 1201 shear like phase, **128**, 150 TlB₃O₅, crystal structure, 131, 370 TlCu_{7-x}S₄, electrical resistivity anomalies and superlattice modulations, role of vacancy ordering, **134**, 5 $(Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}$ (0 $\leq x \leq$ 2) with Tl-2212-type structure, preparation and characterization, 132, 308 Tl₂Ru₂O_{7-y} pyrochlores, metallic and nonmetallic properties, structural and electronic factors in, letter to editor, **131**, 405 $Tl_{1-x}M_{x+y}Sr_2Cu_{1-y}O_5$ (M = Nb, Ta, W), 1201-based cuprate, cation ordering in, 132, 113 Thermal analysis Cu₂(OH)₃(CH₃COO)·H₂O, 131, 252 α -Zr(HPO₄)₂·H₂O large crystals, 132, 17 Thermal conductivity boron and boron phosphide CVD wafers, 133, 314 Thermal decomposition Ag₂Ce(H₂O)(NO₃)₅, temperature-dependent X-ray powder diffraction study, 132, 361 copper(II) dicalcium(II) formate, 132, 235 Cu_xMn_{1-x}(HCOO)₂·2H₂O mixed crystals to copper-manganese oxides, **133**, 416 hydrated potassium molybdenum bronzes, 132, 330 Thermal expansion negative in large molybdate and tungstate family, letter to editor, 133, 580 $ZrV_xP_{2-x}O_7$ and AW_2O_8 (A=Zr,Hf), symmetric stretching vibrations of two-coordinate oxygen bridges in, letter to editor, **129**, 160 titanium at low temperature, **129**, 53 ZrV_2O_7 from -263 to $470^{\circ}C$, **132**, 355 Thermal properties $Bi_{1-x}Ln_xO_{1.5}$ (Ln = Sm-Dy), ion-ordered phases, 129, 98 La₃MoO₇, **129**, 320 RMn_2O_5 (R = La, Pr, Nd, Sm, Eu), 129, 105 NaCoPO₄ polymorph with edge-sharing Co²⁺ octahedral chains, 131, NH₂CH=NH₂SnI₃ cubic perovskite and related systems, **134**, 376 Thermodynamics $(Ba,Sr)_{1+y}UO_{3+x}$, perovskite-related phases, 131, 341 $Ba_{1+y}UO_{3+x}$, perovskite-related phases, **131**, 341 $K_2U_4O_{12}$ and $K_2U_4O_{13}$, EMF and calorimetric measurements, 132, 342 LaB_6 , crystal preparation from Al flux using compound precursors, 133, 237 $La_{0.6}Sr_{0.4}Co_{1-y}Fe_yO_{3-\delta}$ (y=0--0.6), high-temperature coulometric titration studies, ${\bf 130,\ 302}$ $La_{2-x}Sr_xCuO_{4-\delta}$, stability, **131**, 150 NaMgF₃ perovskites, 132, 131 orientationally disordered phases in two-component systems, 133, 536 Thermoelectric power boron and boron phosphide CVD wafers, 133, 314 Thermogravimetry La₂O₃-Co-Co₂O₃ system at 1100 and 1150°C, **131**, 18 Thermopower study FeNbO₄, **134**, 253 Thin films BaTiO₃, preparation using glycolate precursor, 131, 43 boron, preparation and properties, 133, 100 Fe₃O₄, synthesis via sol-gel method, characterization, and magnetic properties, **128**, 87 GaPO₄, synthesis and dielectric properties, 134, 91 magnesium phthalocyanine prepared by vacuum evaporation, electrical and optical characterization, 128, 27 superconducting, barium rare-earth antimonates suitable as substrates for, characterization, **128**, 247 technology, borides in, 133, 279 Ti:WO₃, translational disorder generated by oriented defects in Magneli phases, **131**, 215 ZnO, modification by Ni, Cu, and Cd doping, 128, 176 Zn₂SnO₄ spinel, spray pyrolysis preparation and humidity sensing characteristics, 128, 305 Thorium ThB₄, polar and reticular microhardness anisotropy, 133, 296 ThB₆, polar and reticular microhardness anisotropy, 133, 296 ThCr₂Si₂-type transition metal compounds, LMTO band structure calculations, **130**, 254 $LnTh_2F_{11}$ (Ln = La-Lu, Y), metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277 Thulium Al₅Tm₃O₁₂, cations arrays in garnet-type compounds, **128**, 69 $Hg_2Ba_2ErTm_2O_{8-\delta}$, synthesis and structural and magnetic characterization, 132, 163 TmB₄, polar and reticular microhardness anisotropy, 133, 296 $Tm_2Ba_4Cu_7O_{14+\delta}$, Pr-doped, high-pressure synthesis and characterization. 132. 73 TmCuBaO₅, Gibbs free energy of formation, determination by EMF method, **134**, 85 TmNi₂B₂C, superconducting and magnetic ordering temperatures, effects of Pd, Pt, and Co dopants, 133, 5 Tm–Rh–B system, single crystal growth from molten copper flux, **133**, 82 Tm_{6+x/3}Si₁₁N_{20+x}O_{1-x}, preparation and crystal structure, **129**, 312 Tm₂Sn₂O₇, structural and bonding trends, 130, 58 TmTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277 Tin Ba₂SnO₄, Pr⁴⁺ doped in, EPR spectra, 130, 250 Bi₂Sn₂O₇, Y-doped, bonding and structural variations in, 131, 317 CeRu₄Sn₆, crystal structure, specific heat, and ¹¹⁹Sn Mössbauer spectroscopy, **134**, 326 dopant atoms on surface of $\rm Cr_2O_3$ microcrystals, chemical behavior, Mössbauer study, 132, 284 $\alpha\text{-Fe}_2O_3$ doped with, hydrothermally prepared, structural characterization, 130, 272 $LiSn_2(PO_4)_3$, low-temperature triclinic distortion in, letter to editor, 130, 322 Mn-Sn system, NiAs-Ni₂In-related structures in, 129, 231 NH₂CH=NH₂SnI₃ cubic perovskite and related systems, synthesis, resistivity, and thermal properties, **134**, 376 $[NH_4]^+[(Sn_3O)_2(PO_4)_3]^-$, synthesis and structure, **134**, 207 Pb₂(Sn_{1.5}W_{0.5})O_{6.5} defect pyrochlores, surface segregation and oxygen vacancy ordering, **130**, 81 Ru-Sn systems, binary compounds in, heat capacity and heat content measurements. 133, 439 An_2T_2 Sn (An = Pu,Am; T = Co,Ir,Ni,Pd,Pt,Rh), synthesis, crystal chemistry, and physical properties, **134**, 138 Ln₂Sn₂O₇ (Ln = Y,La,Pr,Nd,Sm-Lu) pyrochlores, structural and bonding trends, 130, 58 Sn(O₃PCH₂CH₃) layered phase, room-temperature synthesis and structural characterization, **132**, 438 Sn₂P₂S₆, synthesis at room temperature, 129, 157 Sr₂SnO₄, Pr⁴⁺ doped in, EPR spectra, **130**, 250 $Zn_{2-x}Sn_{1-x}In_{2x}O_{4-\delta}$ spinel, transparent conducting properties, 134, Zn₂SnO₄, spinel thin films, spray pyrolysis preparation and humidity sensing characteristics, **128**, 305 Zr₂Ni₂Sn, structure and properties, 128, 289 $ZrSn_{0.4}Sb_{1.6}, \ and \ ZrSi_{0.7}Sb_{1.3}$ and $ZrGeSb, \ synthesis$ and structure, ${\bf 134,\ 388}$ Titanium Ag₂TiO₃, synthesis and crystal structure, **134**, 17 aluminum titanate, high-temperature phase formation in sol-gel synthesis, FTIR study, 131, 181 BaTiO₃, thin film preparation using glycolate precursor, 131, 43 BaTiO₃-LaAlO₃ and BaTiO₃-LaAlO₃-LaTi_{3/4}O₃ systems, chemical reactions and dielectric properties, **129**, 223 CsTiSi2O6.5 crystal structure, neutron and X-ray diffraction study, 130, 97 EXAFS and XANES studies, 129, 206 Cs₂TiSi₆O₁₅, crystal structure, 131, 38 $\alpha\text{-Fe}_2O_3$ doped with, hydrothermally prepared, structural characterization, $130,\,272$ higher order elastic constants and generalized Gruneisen parameters of elastic waves and low-temperature thermal expansion, **129**, 53 $HLnTiO_4$ and $HLnTiO_4 \cdot xH_2O$ (Ln = La,Nd,Sm,Gd), structure and Raman spectra, 130, 110 $(\text{LaMn}_{1-x}\text{Ti}_x)_{1-y}\text{O}_3$ ($x \le 0.05$), electrical transport in, 133, 466 $\text{La}_{1-x}\text{Sm}_x\text{TiO}_3$ (0 $\leq x \leq$ 1), magnetic and structural studies, letter to editor, **133**, 583 La_{2-x}Sr_{2x}Cu_{1-x}Ti_xO₄, linear Cu-O-Ti electronic interaction in two dimensions, **128**, 169 Li_{0.5-3x}Nd_{0.5+x}TiO₃ perovskites, microstructural study, **128**, 97 Li₂O-TiO₂-Fe₂O₃ ordered spinels, cation distribution, **134**, 170 Li₅TiN₃, microwave synthesis, **130**, 266 $\text{Li}_{0.74}\text{Ti}_3\text{O}_6$, intergrowth phase of rutile and ramsdellite structure, synthesis and characterization, **129**, 7 LiTi₂O₄, transformation from spinel to ramsdellite upon heating, 132, 382 $Na_{0.875}Fe_{0.875}Ti_{1.125}O_4$, topotactic oxidation of quadruple-rutile-type chain structure, **130**, 184 $NaLnTiO_4$ and $Na_2Ln_2Ti_3O_{10}$ (Ln = La,Nd,Sm,Gd), structure and Raman spectra, 130, 110 Na₄[(TiO)₄(SiO₄)₃]·6H₂O, rhombohedrally distorted titanosilicate pharmacosiderite, synthesis and crystal structure, **134**, 409 Na₂Ti₂Sb₂O layered tetragonal compound, phase transition and spin gap behavior in, **134**, 422 $(NH_4)_2[(Ti_3O_2)(HPO_4)_2(PO_4)_2]$, synthesis and powder X-ray structure, 132, 213 Ni-6 mass% B-58.6 mass% Mo-10 mass% Ti, high-strength boride base hard materials, 133, 243 Pb₂(Ti_{1.5}W_{0.5})O_{6.5} defect pyrochlores, surface segregation and oxygen vacancy ordering, **130**, 81 TeO_2 -BaO-TiO₂ glasses, structural and nonlinear optical characterizations, 132, 411 TiB_2 nanocrystalline materials, hardness, elastic modulus, and electrical resistivity, **133**, 249 PVD coatings, structure and properties, 133, 117 in thin film technology, 133, 279 Ti-B-C system including sections TiC_y-TiB₂ and B₄C_y-TiB₂, **133**, 205 TiB₂-CrB₂-WB₂ supersaturated solid solutions, annealing, phase formation during, **133**, 25 Ti_4TBi_2 (T = Cr,Mn,Fe,Co,Ni), preparation and properties, 133, 400 Ti_8Bi_9 , preparation and crystal structure, 134, 26 TiN microwave synthesis, 130, 266 nanocrystalline materials, hardness, elastic modulus, and electrical resistivity, 133, 249 synthesis from ammonolysis of TiS₂, 134, 120 TiN/TiB₂ nanocrystalline materials, hardness, elastic modulus, and electrical resistivity, **133**, 249 TiO₂ anatase nanopowders, Ru complex sensitizers of, crystal structure, 132, 60 ultrafine particles, transformation from rutile to anatase at negatively charged colloid surfaces, letter to editor, 132, 447 [Ti₂O(PO₄)₂(H₂O)₂], synthesis and X-ray powder structures, 132, 213 $[Ti_3(PO_4)_4(H_2O)_2]\cdot NH_3,$ synthesis and X-ray powder structures, 132, 213 TiS₂, ammonolysis: synthesis of TiN, 134, 120 $Ti:WO_3$ thin films, translational disorder generated by oriented defects in Magneli phases, 131, 215 zirconolite-4M substituted with Nd, analysis and structure, 129, 346 Transition metals compounds of edge-sharing square planar units MX_4 , square planar to rectangular distortion in, 128, 181 rare earth transition metal borides and their hydrides, low-temperature synthesis, 133, 145 $ThCr_2Si_2$ -type compounds, LMTO band structure calculations, 130, 254 Transmission electron microscopy reaction at interface of yttria-doped ceria and yttria-stabilized zirconia, 129, 74 Transport properties $Ag_{1.92}$ Te at 160°C, **130**, 140 LaMnO_{3+ δ}, **130**, 117 Triclinic distortion in LiSn₂(PO₄)₃ at low temperature, letter to editor, 130, 322 1,3,5-Triethynylbenzene preferential formation of $C \equiv C - H \cdots \pi(C \equiv C)$ interactions in solid state, 134, 203 Trirutile-type compounds Cu²⁺ polyhedra in, geometry and electronic structure, 131, 263 1,1,1-Tris(hydroxymethyl)propane and 2-amino-2-methyl-1,3-propanediol, orientationally disordered phases, crystallography and thermodynamics, 133, 536 Tungsten Ba₂Cu_xZn_{1-x}WO₆ mixed crystals, cooperative Jahn-Teller effect in Raman spectra, 129, 117 $Ba_5Ru_{1.6}W_{0.4}Cl_2O_9$, 10-layer perovskite-related oxyhalide, crystal structure, 132, 407 CrWN₂, chemical synthesis and crystal structure, 128, 185 Fe₄W₂N, with unique η-carbide structure, synthesis, **134**, 302 (Fe_{0.8}W_{0.2})WN₂, synthesis and characterization, **131**, 374 $H_2WO_4 \cdot nH_2O$ surfaces, transformation of ultrafine rutile particles to anatase at, letter to editor, 132, 447 $MIn(WO_4)_2$ (M = Li, Na, K, Cs), vibrational characteristics, 129, 287 LaNi_{1-x}W_xO₃ ($0 \le x \le 0.25$) perovskites, magnetic properties, 134, 274 Li(Mo,W)₂O₃(PO₄)₂, synthesis and intersecting tunnel structure, 128, 215 $(Mo_xW_{1-x})AlB$, single crystal growth by metal Al solutions and crystal properties, 133, 36 MoWO₃(PO₄)₂, crystal structure, 128, 191 Na_{0.10}WO₃ bronze with distorted perovskite structure, X-ray and electron diffraction study, **133**, 479 Ni-6 mass% B-58.6 mass% Mo-10 mass% W, high-strength boride base hard materials, 133, 243 Pb_{0.26}WO₃ bronze, X-ray and electron diffraction study, 130, 176 $Pb_2(M_{1.5}W_{0.5})O_{6.5}$ (M=Ti,Sn), defect pyrochlores, surface segregation and oxygen vacancy ordering, 130, 81 $[PMo_{4.27}W_{7.73}O_{40}^{6-}][H_3N(CH_2)_6NH_3^{2+}]_3$, hydrothermal synthesis and structure, **129**, 257 Rb₂Mo₂WO₅(PO₄)₃, interconnected tunnel structure, 130, 48 $Sb_{0.16}WO_3$ intergrowth tungsten bronze, X-ray diffraction and electron diffraction study, 134, 344 Sb-(W,V)-O system, Aurivillius-related phases in, structure and properties, 128, 30 Ta₂O₅-WO₃ system, incommensurate structures of *L*-Ta₂O₅-type phases in, **126**, 208; *erratum*, **129**, 368 TiB₂-CrB₂-WB₂ supersaturated solid solutions, annealing, phase formation during, 133, 25 Ti:WO₃ thin films, translational disorder generated by oriented defects in Magneli phases, 131, 215 $Tl_{1-x}Sr_2Cu_{1-y}W_{x+y}O_{5-\delta}$, 1201-based cuprate, cation ordering in, **132**, 113 $W_5As_{2.5}P_{1.5}$ with one-dimensional vertex-linked W_6 cluster, 131, 310 WO₃, single crystal diffraction studies and structure at high pressures, 132, 123 ε-WO₃, structure and ferroelectricity, 131, 9 AW_2O_8 (A = Zr,Hf), negative thermal expansion at high temperature, symmetric stretching vibrations of two-coordinate oxygen bridges in, letter to editor, **129**, 160 AW₃O₁₂, negative thermal expansion, letter to editor, 133, 580 Tunnel structure Ba₆Mn₂₄O₄₈, HREM study, **132**, 239 interconnected, Rb₂Mo₂WO₅(PO₄)₃, 130, 48 intersecting, Na₃(MoO)₂(PO₄)₃, 132, 249 K₂(VO)₂P₄O₁₃, 132, 41 Li(Mo,W)₂O₃(PO₄)₂, **128**, 215 NaCoPO₄, 129, 328 Two-dimensional conductors TeMo₅O₁₆, synthesis and crystal structure, 129, 303 U UGP, see Geometrical unit of polyhedra Uranium $(Ba,Sr)_{1+y}UO_{3+x}$, perovskite-related phases, structure and thermodynamics, 131, 341 $Ba_{1+y}UO_{3+x}$, perovskite-related phases, structure and thermodynamics, 131, 341 $K_2U_4O_{12}$ and $K_2U_4O_{13}$, EMF and calorimetric measurements of thermodynamic properties, 132, 342 UB_4 , polar and reticular microhardness anisotropy, 133, 296 UBe₁₃, heavy fermion superconductors, chemical bonding topology, 131, 394 U₃Ga₂Ge₃, nuclear and magnetic structure, neutron powder diffraction study, 131, 72 UGe, crystal structure and magnetic behavior, 129, 113 $UXPO_4 \cdot 2H_2O$ (X = Cl,Br), structure determination from powder X-ray diffraction data, 132, 315 UPt₃, heavy fermion superconductors, chemical bonding topology, **131**, U₂PtC₂, heavy fermion superconductors, chemical bonding topology, 131, 394 URu₂Si₂, heavy fermion superconductors, chemical bonding topology, 131, 394 Urea inclusion compound with 1,10-decanedicarboxylic acid, temperaturedependent structural properties, 128, 273 ٧ Vacancy ordering oxygen in $Pb_2(M_{1.5}W_{0.5})O_{6.5}$ (M = Ti,Sn) defect pyrochlores, 130, 81 role in electrical resistivity anomalies and superlattice modulations in $ACu_{7-x}S_4$ (A = Tl,K,Rb), 134, 5 Vacuum evaporation magnesium phthalocyanine thin films prepared by, electrical and optical characterization, **128**, 27 Valence copper in LaCuO_{3-y} ($0 \le y \le 0.5$), control by oxygen content adjustment, **130**, 213 mixed-valences state, effect on magnetic excitation spectrum of SmB₆-based compounds, **133**, 230 Valence degeneracy in $La_{2-x}Sr_{2x}Cu_{1-x}M_xO_4$ (M = Ti,Mn,Fe,Ru), 128, 169 Valence stabilization in tetrahedral oxo and hydroxo Cr(IV), Mn(V), and Fe(VI) clusters, theoretical study, 128, 1 Vanadium $Ag_{1.2}V_3O_8$, crystal structure: relationship to $Ag_2V_4O_{11-y}$ and interpretation of physical properties, **134**, 294 Ag₂VP₂O₈, structure and ionic conductivity, 130, 28 Ba₃(VO₄)₂, high-pressure behavior, 132, 156 $Bi_{13}Mo_4VO_{34}E_{13}$, $[Bi_{12}O_{14}E_{12}]_n$ columns and lone pairs E in, 131, 236 Bi_2O_3 – MoO_3 – V_2O_5 system, synthesis, crystal structure, and chemistry, 131, 236 Bi–Ln–V–O anionic conductors with δ-Bi₂O₃ fluorite-type structure (Ln = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), **134**, 219 CaV_2O_5 , crystal structure and spin gap state, letter to editor, 127, 359; addendum, 129, 367 Cs₂V₄O₁₁ with unusual V–O coordinations, crystal structure, **134**, 52 Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)], two-dimensional solid with pillared layers, synthesis and structure, **132**, 144 $H_xV_2Zr_2O_9\cdot H_2O$ (x=0.43), hydrothermal synthesis and characterization, 128, 313 $K_2(VO)_2P_4O_{13}$, with tunnel structure, synthesis and properties, 132, 41 LiMnVO₄, ambient and high-pressure structures and Mn^{3+}/Mn^{2+} redox energy, 128, 267 $Mn_{1-x-y}Ag_y\Phi V_{2-2x-y}Mo_{2x+y}O_6$, solid solutions, synthesis and study, 133, 545 NH₄VOPO₄ and (NH₄)₃V₂O₃(VO)(PO₄)₂(HPO₄), crystal structure, and analysis of hydrothermal vanadium phosphate systems at 473 K, **134**, 286 Ni-6 mass% B-58.6 mass% Mo-10 mass% V, high-strength boride base hard materials, 133, 243 PbFe_xV_{6-x}O₁₁ ($1 \le x \le 1.75$), *R*-type frustrated system, Fe substitution effects on structural, electric, and magnetic properties, **130**, 223 Rb₅VONb₁₄O₃₈, synthesis and crystal structure, 134, 10 β -rhombohedral boron doped with electronic structure, electron energy-loss spectroscopic study, **133**, 152 icosahedral solids, electronic properties, **133**, 160 Sb-(W,V)-O system, Aurivillius-related phases in, structure and properties, 128, 30 Sr₃(VO₄)₂, high-pressure behavior, **132**, 156 VB₂, Czochralski-grown single crystals, microhardness, 133, 113 VB₃₂, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335 VC, metal-to-metal bonding in, **128**, 121 VN metal-to-metal bonding in, 128, 121 microwave synthesis, 130, 266 synthesis from ammonolysis of VS₂, 134, 120 V_2O_3 , metal-insulator transition in, acoustic emission during, **133**, 430 δ - $M_{0.25}V_2O_5 \cdot H_2O$ (M = Ca,Ni), crystal structure, **132**, 323 V₂O₅·nH₂O surfaces, transformation of ultrafine rutile particles to anatase at, letter to editor, **132**, 447 VS₂, ammonolysis: synthesis of VN, **134**, 120 ZrV_2O_7 , structure from - 263 to 470°C, **132**, 355 $\text{ZrV}_x\text{P}_{2-x}\text{O}_7$, negative thermal expansion at high temperature, symmetric stretching vibrations of two-coordinate oxygen bridges in, letter to editor, **129**, 160 Vanadium phosphates NH₄/V/P/H₂O and K/V/P/N(C₂H₅)₃/H₂O hydrothermal systems, analysis at 473 K, and crystal structures of NH₄VOPO₄ and (NH₄)₃V₂O₃(VO)(PO₄)₂(HPO₄), **134**, 286 Van Hove singularity in SrRh₂P₂, **130**, 254 Vibrational spectra superionics Li₄SiO₄ and Li₄GeO₄, 134, 232 Vibrations two-coordinate oxygen bridges in negative thermal expansion of $ZrV_xP_{2-x}O_7$ and AW_2O_8 (A=Zr,Hf) at high temperature, letter to editor. 129, 160 Vibronic degeneracy effects in superconductivity, 129, 174 W Water Ag₂Ce(H₂O)(NO₃)₅, structure and thermal decomposition, temperature-dependent X-ray powder diffraction study, **132**, 361 Ba(CoPO₄)₂·H₂O, lamellar hydrated phosphate with two-dimensional array of Co-O-Co network, **131**, 387 Me^+ Br· Me^{2+} Br₂·6H₂O (Me^+ = K,NH₄,Rb; Me^{2+} = Co,Ni), crystallization and structure, **129**, 200 $CaHPO_4\cdot 2H_2O,$ protonic mobility in, IR spectroscopic and neutron scattering studies, 132, 6 $Cd_3^{II}[(Fe^{III}/Co^{III})(CN)_6]_2 \cdot 14H_2O,$ X-ray diffraction and spectral studies, 129, 17 $(CH_3NH_3)_2M(II)(SO_4)_2 \cdot 6H_2O$ (M(II) = Cu,Zn,Ni), IR and Raman spectra, **133**, 407 CoCl₂·6H₂O, solid-solid reactions with 4-methylbenzeneamine, 132, 291 CuCl₂·2H₂O, solid-solid reactions with 4-methylbenzeneamine, **132**, 291 Cu_xMn_{1-x}(HCOO)₂·2H₂O mixed crystals, thermal decomposition to copper-manganese oxides, **133**, 416 CuNbOF₅·4H₂O, infrared spectroscopy, **133**, 576 Cu₂(OH)₃(CH₃COO)· H₂O, preparation, characterization, and *ab initio* X-ray powder diffraction, **131**, 252 [Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], hydrothermal synthesis, crystal structure, and magnetic properties, **134**, 349 M_3 Fe₂(SeO₃)₆·2H₂O (M = Mg,Co,Ni), synthesis, crystal structure, and IR and Mössbauer spectroscopy, **131**, 54 (H₃O)Yb₃F₁₀⋅H₂O, chimie douce synthesis and ab initio structure determination, **128**, 42 $HLnTiO_4 \cdot xH_2O$ (Ln = La,Nd,Sm,Gd), structure and Raman spectra, 130, 110 $H_xV_2Zr_2O_9 \cdot H_2O$ (x=0.43), hydrothermal synthesis and characterization, **128**, 313 $H_2WO_4 \cdot nH_2O$ surfaces, transformation of ultrafine rutile particles to anatase at, letter to editor, 132, 447 hydrothermal $NH_4/V/P/H_2O$ and $K/V/P/N(C_2H_5)_3/H_2O$ systems, analysis at 473 K, and crystal structures of NH_4VOPO_4 and $(NH_4)_3V_2O_3(VO)(PO_4)_2(HPO_4)$, 134, 286 $KAl(HPO_4)_2 \cdot H_2O$, X-ray diffraction, neutron scattering, and solid-state NMR, 132, 47 $K[Fe_2(PO_4)_2(OH)(H_2O)] \cdot H_2O$, hydrogen bonding and structural relationships, 133, 508 $K_{0.23}(H_2O)_{0.27}MoO_{3.00}$, $K_{0.23}(H_2O)_{0.43}MoO_{3.00}$, and $K_{0.23}(H_2O)_{0.65}$ MoO_{3.00} bronzes, preparation and thermal decomposition, **132**, 330 KNa(C₄H₄O₆)·4H₂O, structure, **131**, 350 [Mg $_{0.174}$ Ga $_{0.256}$ (OH) $_2$](CO $_3$) $_{0.134}\cdot$ mH $_2$ O, synthesis, characterization, and 1 H and 71 Ga MAS NMR, 131, 78 Na₂Cu(SO₄)₂·2H₂O, IR and Raman spectra, 133, 407 NaH₂PO₄·2H₂O, high microwave susceptibility: synthesis of crystalline and glassy phosphates with NASICON-type chemistry, **132**, 349 Na₄[(TiO)₄(SiO₄)₃]·6H₂O, rhombohedrally distorted titanosilicate pharmacosiderite, synthesis and crystal structure, **134**, 409 NiCl₂·6H₂O, solid-solid reactions with 4-methylbenzeneamine, 132, 291 (3PbO·PbSO₄·H₂O), crystal structure, **132**, 173 (Pr/La)Co(CN)₆⋅5H₂O, mixed cationic systems, synthesis and crystal structure, **129**, 12 $RbZn_2(HPO_4)_2(H_2PO_4) \cdot 2H_2O$ and $RbZn(HPO_4)(H_2PO_4) \cdot H_2O$, syntheses and crystal structures, **134**, 148 [Ti₂O(PO₄)₂(H₂O)₂], synthesis and X-ray powder structures, **132**, 213 [Ti₃(PO₄)₄(H₂O)₂]·NH₃, synthesis and X-ray powder structures, **132**, 213 $UXPO_4 \cdot 2H_2O$ (X = Cl,Br), structure determination from powder X-ray diffraction data, 132, 315 δ - $M_{0.25}$ V₂O₅·H₂O (M = Ca,Ni), crystal structure, 132, 323 V₂O₅·nH₂O surfaces, transformation of ultrafine rutile particles to anatase at, letter to editor, 132, 447 α-Zr(HPO₄)₂·H₂O large crystals, thermoanalytical study, phase transitions, and dimensional changes, **132**, 17 $\beta\text{-}Zr(OH)_2(NO_3)_2\cdot H_2O,$ structural analysis by X-ray powder diffraction, **128**, 295 $\alpha\text{-}Zr(OH)_2(NO_3)_2\cdot 1.65H_2O,$ structural analysis by X-ray powder diffraction, 128, 295 ### Х XANES, see X-ray absorption near edge structure X-ray absorption near edge structure CsTiSi₂O_{6.5}, **129**, 206 LiMn₂O₄ *in situ* study of charge–discharge process, letter to editor, **133**, 586 spinel-type, letter to editor, **128**, 326 X-ray diffraction CsTiSi₂O_{6.5}, single-crystal XRD, 130, 97 decomposition processes in single crystals of K₂NiF₄-type aluminate LaCaAlO₄, 134, 132 KAl(HPO₄)₂·H₂O, single-crystal studies, 132, 47 LiMn₂O₄ and Li₂MnO₃ coexisting phases, stoichiometry, 128, 80 Na_{0.10}WO₃ bronze with distorted perovskite structure, **133**, 479 (3PbO·PbSO₄·H₂O), single-crystal studies, 132, 173 $Sb_{0.16}WO_3$ intergrowth tungsten bronze, single-crystal studies, **134**, 344 (Sr,Ca)₄Cu₆O₁₀ three-leg-ladder compound, single-crystal studies, **134**, 427 WO_3 at high pressures, single-crystal studies, 132, 123 $YFe_2D_{3.5},$ 133, 568 X-ray photoelectron spectroscopy state of boron atoms in amorphous metallic matrix, 133, 273 XPS-XAES of $Cu_2(OH)_3(CH_3COO) \cdot H_2O$, 131, 252 X-ray scattering wide-angle, nonstoichiometric NiMn₂ $\square_{3\delta/4}$ O_{4+ δ} spinels, **129**, 271 Υ Young's modulus B₄C–C injection molded ceramics, **133**, 68 nanocrystalline borides and related compounds, **133**, 249 Ytterbium Al₅Yb₃O₁₂, cations arrays in garnet-type compounds, 128, 69 Bi-Yb-V-O anionic conductors with δ -Bi₂O₃ fluorite-type structure, 134, 219 $(Gd-Yb)_4Mo_{18}O_{32}$, with Mo_n (n=2,4,6) cluster chains, anomalous metal-insulator transitions in, **134**, 45 $Hg_2Ba_2ErYb_2O_{8-\delta},$ synthesis and structural and magnetic characterization, 132, 163 (H₃O)Yb₃F₁₀⋅H₂O, chimie douce synthesis and ab initio structure determination, **128**, 42 Rb₄YbI₆, synthesis and crystal structure, 128, 66 YbB₆, polar and reticular microhardness anisotropy, 133, 296 YbCuBaO₅, Gibbs free energy of formation, determination by EMF method, **134**, 85 YbOOH, cation arrays, 131, 358 YbRh₃B₂, single crystal growth from molten copper flux, 133, 82 $Yb_{6+x/3}Si_{11}N_{20+x}O_{1-x}$, preparation and crystal structure, 129, 312 Yb₂Sn₂O₇, structural and bonding trends, 130, 58 YbTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277 Yttrium AlSr₂YCu₂O₇, structural order/disorder in, 133, 434 Ba₂(YSb)O₆, ordered perovskites suitable as substrates for superconducting films, characterization, **128**, 247 $Bi_2Sn_2O_7$ doped with, bonding and structural variations in, 131, 317 Bi-Y-V-O anionic conductors with $\delta-Bi_2O_3$ fluorite-type structure, 134, 219 LiYF₄, Am³⁺ in, spectroscopic studies and crystal-field analysis, **129**, 189 $Y_3X_2Al_3O_{12}$ garnets (X = Al and (Al,Cr)), electron density study, 134, YB_6 electronic structure calculations, 133, 51 incongruently melting, single crystal growth and properties, **133**, 198 in thin film technology, **133**, 279 YB_{25} , powder X-ray diffraction and electron diffraction studies, 133, 122 YB_{56} and YB_{62} with YB_{66} -type structure, structural refinement, 133, 16 YB_{66} (100) surface structure and chemistry, 133, 31 interband critical transition points, 133, 132 modulated photoconductivity, 133, 195 reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335 YBa₂Cu₃O_v electrochemical doping with *M-β*"-Al₂O₃ ionic conductors, **128**, 93 single crystal, structure and electron density, effects of oxygen introduction, **130**, 42 YBa₂Cu₃O_{6+x}, orthorhombic, dependence of lattice parameters on oxygen content, **134**, 356 $YBa_2Cu_3O_{7-\delta}$, substrates $Ba_{2-x}Sr_xDyTaO_6$ (x=0,1,2) for, development and dielectric properties, **133**, 522 $(YBa_2Cu_3O_{7-0.25})_4$, superconductive mechanism, 129, 174 YBO₃, structure, **128**, 261 $Y_{17.33}(BO_3)_4(B_2O_5)_2O_{16}$, structure and luminescence, 134, 158 YB₄₁Si_{1.2}, crystal structure, 133, 11 YB₄₄Si_{1.0}, single crystal growth, 133, 55 Y₄C₅, crystal structure, **132**, 294 YCoO₃, structure from neutron diffraction, 130, 192 YFe₂D_{3.5}, X-ray and neutron powder diffraction studies, 133, 568 YMnO₃, with metastable perovskite-type structure, synthesis, **129**, 334 Y₄Mo₁₈O₃₂, with Mo_n (n = 2,4,6) cluster chains, anomalous metal–insulator transitions in, **134**, 45 (YO_{1.5})_{0.2}(CeO₂)_{0.8}, reaction at interface with yttria-stabilized zirconia, TEM study, 129, 74 YOOH, cation arrays, 131, 358 (Y₂O₃)_{0.08}(ZrO₂)_{0.92}, reaction at interface with yttria-doped ceria, TEM study, **129**, 74 Y-Pd-B-C system, chemical and physical properties, 133, 169 YRh₂B₂C, synthesis and characterization, **133**, 77 $Y_{6+x/3}Si_{11}N_{20+x}O_{1-x}$, preparation and crystal structure, **129**, 312 $Y_2Sn_2O_7$, structural and bonding trends, **130**, 58 YTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277 Z Zinc Ba₂Cu_xZn_{1-x}WO₆ mixed crystals, cooperative Jahn-Teller effect in Raman spectra, **129**, 117 Ba₂FeZnF₇Cl, Mössbauer spectroscopy, 131, 198 $(CH_3NH_3)_2Zn(II)(SO_4)_2\cdot 6H_2O,\ IR$ and Raman spectra, 133, 407 K_2ZnGeO_4 , α and β forms, crystal structures, 134, 59 $N(CH_3)_4 \cdot Zn(H_2PO_4)_3$, molecular cluster, synthesis and crystal structure, 131, 363 N(CH₃)₄· Zn(HPO₄)(H₂PO₄), open framework phase built up from lowdensity 12-ring topology, synthesis and crystal structure, **131**, 363 [NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganicorganic layers, synthesis and characterization, **132**, 229 RbZn₂(HPO₄)₂(H₂PO₄) · 2H₂O and RbZn(HPO₄)(H₂PO₄) · H₂O, syntheses and crystal structures, **134**, 148 Sr₂Cu₂ZnO₂S₂, synthesis and properties, 130, 319 zinc blende crystals, atomic sizes in, linear electro-optic coefficient dependence on, 130, 54 Zn^{2+} , electrochemical doping of oxide ceramics with Zn- β'' - Al_2O_3 ionic conductors, **128**, 93 Zn(CN)₂, disordered crystal structure, 134, 164 [Zn-Cr-SO₄] lamellar double hydroxides, selective synthesis, **130**, 66 Zn(Mg)_{1-x}Cu_xSb₂O₆, trirutile-type compounds, Cu²⁺ polyhedra in, geometry and electronic structure, **131**, 263 ZnO, thin films, modification by Ni, Cu, and Cd doping, **128**, 176 Zn₃O₂, crystal structure, **132**, 56 $Zn_{2-x}Sn_{1-x}In_{2x}O_{4-\delta}$ spinel, transparent conducting properties, 134, 192 Zn₂SnO₄, spinel thin films, spray pyrolysis preparation and humidity sensing characteristics, 128, 305 Zintl phases tetrahedral cluster packing and other three-connected nets in, 133, 501 Ca-Zr-O-N system, oxynitride synthesis in ZrO₂-rich part and characterization. 128, 282 CrZr_{0.75}Nb_{0.25}F₆, antiferrodistortive order in solid solution, 131, 231 $H_xV_2Zr_2O_9 \cdot H_2O$ (x = 0.43), hydrothermal synthesis and characterization, **128**, 313 Mg–Zr–O–N system, oxynitride synthesis in ZrO_2 -rich part and characterization, 128, 282 Ni-6 mass% B-58.6 mass% Mo-10 mass% Zr, high-strength boride base hard materials, 133, 243 $Sr_{1-x}Ba_xZrSe_3$ series, structural evolutions in, 130, 20 (Y₂O_{3)0.08}(ZrO₂)_{0.92}, reaction at interface with yttria-doped ceria, TEM study, **129**, 74 zirconolite-4M substituted with Nd, analysis and structure, 129, 346 ZrB₂, in thin film technology, 133, 279 ZrB₁₂, in thin film technology, **133**, 279 Zr₂CoP, structure and characterization, 131, 379 ZrGeSb, ZrSi_{0.7}Sb_{1.3}, and ZrSn_{0.4}Sb_{1.6}: family containing ZrSiS-type and β -ZrSb₂-type compounds, **134**, 388 α-Zr(HPO₄)₂·H₂O large crystals, thermoanalytical study, phase transitions, and dimensional changes, 132, 17 Zr₂Ni₂In, structure and properties, 128, 289 Zr₂NiP, structure and characterization, 131, 379 Zr₂Ni₂Sn, structure and properties, 128, 289 ZrO₂, structure, relationship to structure of Ca(OD)₂ II prepared at high pressure, powder neutron diffraction study, **132**, 267 β-Zr(OH)₂(NO₃)₂·H₂O, structural analysis by X-ray powder diffraction, 128, 295 $\alpha\text{-}Zr(OH)_2(NO_3)_2\cdot 1.65H_2O,$ structural analysis by X-ray powder diffraction, 128, 295 ZrSiO₄, iron-doped pigments, synthesis by pyrolysis of aerosols, **128**, 102 ZrSi_{0.7}Sb_{1.3}, ZrSn_{0.4}Sb_{1.6}, and ZrGeSb: family containing ZrSiS-type and β -ZrSb₂-type compounds, **134**, 388 ZrV_2O_7 , structure from - 263 to 470°C, **132**, 355 $ZrV_xP_{2-x}O_7$ and ZrW_2O_8 , negative thermal expansion at high temperature, symmetric stretching vibrations of two-coordinate oxygen bridges in, letter to editor, **129**, 160 Zirconolite-4M Nd-substituted, analysis and structure, 129, 346