Cumulative Subject Index for Volumes 128–134¹

Α

Absorption spectroscopy

magnesium phthalocyanine thin films prepared by vacuum evaporation, 128, 27

 β -rhombohedral boron, **133**, 129

Aciculate ultrafine particles

 α -Fe₂O₃, kinetics of reduction to Fe₃O₄ particles, **134**, 248 acidity

Mg-Fe catalyst surface prepared from hydrotalcite-like precursors, microcalorimetric study, 128, 73

Acoustic emission

during metal-insulator phase transition in V₂O₃, 133, 430

Adsorption

by LaNi₅ particles, 134, 67

Aerosols

pyrolysis, in synthesis of iron zircon pigments, 128, 102

Alkaline earth elements

 $Ln_{0.5}A_{0.5}$ MnO₃ (Ln = rare earth; A = alkaline earth), charge ordering in, dependence on size of A-site cation, letter to editor, **129**, 363 n-Alkylamines

intercalation into hydrated hydrogen insertion compound derived from blue potassium molybdenum bronze, **128**, 256

Alloys

fcc-based, ordering in, similarity to cation ordering in [(Tl,M)O] layers of 1201-based cuprate, 132, 113

Alluaudite

garnet-alluaudite polymorphism in $NaCa_2M_2^{2+}(AsO_4)_3$ ($M^{2+} = Mg$, Ni,Co), cationic substitution effects, 131, 290

related structure

NaCaCdMg₂(AsO₄)₃, 131, 298

Na₃In₂(AsO₄)₃ with, **134**, 31

synthetic modifications, 131, 131

Aluminum

Al₁₂ and A₁₃, bonding in, 133, 302, 310

AIN, microwave synthesis, 130, 266

AlLnO₃ (Ln = La,Ce,Pr,Nd,Sm,Ho), cation arrays in perovskite-type compounds, **128**, 69

 Al_2O_3 , xerogel doped with La and Ce, X-ray diffraction, FTIR, and NMR studies, 128, 161

M- β'' -Al₂O₃ ($M = Na^+, K^+, Ca^{2+}, Sr^{2+}, Ag^+, Zn^{2+}$) ionic conductors, electrochemical doping with, **128**, 93

 $Al_5Ln_3O_{12}$ (Ln = Gd-Lu), cations arrays in garnet-type compounds, **128**, 69

AlOOH, cation arrays, 131, 358

Al-Pd-Re quasicrystals

modulated photocurrent measurements, 133, 224

photocurrent observations, 133, 302

 $Al_{92-x}Pd_xRe_8$ -type quasicrystals, electronic properties, 133, 160

 $[Al_3P_4O_{16}]^{3-} \cdot 3[CH_3CH_2NH_3]^+$, nonaqueous synthesis and characterization, **129**, 37

AlSr₂YCu₂O₇, structural order/disorder in, 133, 434

aluminum titanate, high-temperature phase formation in sol-gel synthesis, FTIR study, 131, 181

BaO-Al₂O₃-AlN system, phase relations, 129, 66

BaTiO₃-LaAlO₃ and BaTiO₃-LaAlO₃-LaTi_{3/4}O₃ systems, chemical reactions and dielectric properties, **129**, 223

B-C-Al compounds with boron carbide structure, IR active phonon spectra, 133, 254

Ca₈[Al₁₂O₂₄](MoO₄)₂, structure and high-temperature phase transitions, 129, 130

Ca₃(Cr,Al)₂Si₃O₁₂ garnets, electron density study, 132, 432

 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)]$, synthesis and characterization, 128,

CuAl₂, structural relationship to SiF₄, 132, 151; erratum, 134, 431

ErAlB₁₄, icosahedral solids, electronic properties, **133**, 160

flux, LaB₆ preparation from, thermodynamic analysis, 237

icosahedral cluster solids in Al-based compounds, 133, 302

 $KAl(HPO_4)_2 \cdot H_2O, X$ -ray diffraction, neutron scattering, and solid-state NMR, 132, 47

LaCaAlO₄, K₂NiF₄-type aluminate single crystals, decomposition processes in, X-ray diffraction study, 134, 132

lanthanum magnesium hexaaluminate, defect energetics and nonstoichiometry, 130, 199

Li₃AlN₂, microwave synthesis, 130, 266

(Mo_xCr_{1-x})AlB and (Mo_xW_{1-x})AlB, single crystal growth by metal Al solutions and crystal properties, **133**, 36

Na₃Al(OH)(HPO₄)(PO₄), synthesis and chain structure, 128, 21

NaAlO₂-NaAlSiO₄ system, cristobalite-related phases in, XRD and electron diffraction study, 131, 24

 $Y_3X_2Al_3O_{12}$ garnets (X = Al and (Al,Cr)), electron density study, 134, 182

Americium

Am³⁺, in LiYF₄, spectroscopic studies and crystal-field analysis, **129**,

 Am_2T_2X (T = Co,Ir,Ni,Pd,Pt,Rh; X = In,Sn), synthesis, crystal chemistry, and physical properties, **134**, 138

Aminoboranes

as BN source for coatings, matrix, and Si_3N_4 -BN composite ceramics, 133, 164

2-Amino-2-methyl-1,3-propanediol

and 1,1,1-tris(hydroxymethyl)propane, orientationally disordered phases, crystallography and thermodynamics, 133, 536

2-Amino-5-nitropyridinium chloride

crystal growth, 129, 22

Ammonium

(ND₄)₂PdCl₆, antifluorite, phase analysis, 131, 221

 $NH_4Br \cdot Me^{2+}Br_2 \cdot 6H_2O$ ($Me^{2+} = Co, Ni$), crystallization and structure, **129**, 200

β-(NH₄)₂FeF₅, hydrogen bonding-induced NH₄⁺ ordering at low temperature, structural and spectroscopic evidence, **131**, 189

 $[NH_4]^+[(Sn_3O)_2(PO_4)_3]^-$, synthesis and structure, 134, 207

 $(NH_4)_2[(Ti_3O_2)(HPO_4)_2(PO_4)_2]$, synthesis and X-ray powder structure, 132, 213

Ammonium vanadate phosphates

NH₄VOPO₄, crystal structure, and analysis of hydrothermal vanadium phosphate systems at 473 K, 134, 286

¹ Boldface numbers indicate volume; lightface numbers indicate pagination.

(NH₄)₃V₂O₃(VO)(PO₄)₂(HPO₄), crystal structure, and analysis of hydrothermal vanadium phosphate systems at 473 K, 134, 286

Cr₂S₃, TiS₂, and VS₂: synthesis of CrN, TiN, and VN, **134**, 120 Anatase

formation by transformation of ultrafine rutile particles at negatively charged colloid surfaces, letter to editor, 132, 447

TiO₂ nanopowders, Ru complex sensitizers of, crystal structure, 132, 60 Annealing

effects on quaternary borocarbides, 133, 169

TiB2-CrB2-WB2 supersaturated solid solutions, phase formation during, 133, 25

Announcements

Notice to individuals engaged in research in the solid state chemistry and materials area, 129, 369

Second International Conference on Mechanochemistry and Mechanical Activation, Academgorodok, Novosibirsk, Russia, August 1997, **128,** 330

Antiferrodistortive order

in CrZr_{0.75}Nb_{0.25}F₆ solid solution, 131, 231

Antiferromagnetic coupling

in $[Cu(II)(\mu-3,5-dimethylpyrazolate)(\mu-OH)]$ and $[Cu(II)(\mu-pyrazolate)]$ $(\mu\text{-OH})$], **132**, 24

Antiferromagnetic ordering

Bi₂Sr₂CuO₆, 133, 372

 RNi_2B_2C ($R = Tm_1Er$), T_N , effects of Pd, Pt, and Co dopants, 133, 5 $Sr_2Cu_2MO_2S_2$ (M = Mn,Zn), 130, 319

Antifluorites

(ND₄)₂PdCl₆, phase analysis, 131, 221

Antimony

 $Ba_2(RSb)O_6$ (R = Y,Ho), ordered perovskites suitable as substrates for superconducting films, characterization, 128, 247

BaTl_{0.5}Sb_{0.5}O₃, ordered perovskite, structural analysis, letter to editor, **128.** 323

Cs₃Sb₂I₉, reconstructive phase transformation and kinetics by means of Rietveld analysis of X-ray diffraction and ¹²⁷I NQR, **134**, 319

CuSb₂O₆, dimorphism, solid state and EPR study, 131, 263

GaSb, zinc blende crystals, linear electro-optic coefficient, 130, 54 InSb, zinc blende crystals, linear electro-optic coefficient, 130, 54

Li₃Cu₂SbO₆ with partially ordered rock salt structure, synthesis, 131, 115

 $Mn_7Sb_4(\mu_5-O)_2(\mu_4-O)_2(\mu_3-OEt)_2(\mu-OEt)_{16}(HOEt)_2$, synthesis structural analysis, 134, 312

Na₂Ti₂Sb₂O layered tetragonal compound, phase transition and spin gap behavior in, 134, 423

SbCrSe₃ 1D ferromagnet, structure determination by HREM image analysis, 132, 257

Sb₂S₃-As₂S₃-Tl₂S glasses, ¹²¹Sb Mössbauer spectroscopy, **133**, 458 $Sb_2Te_{3-x}Se_x$ crystals, point defects in, 129, 92

 $Sb_{0.16}WO_3$ intergrowth tungsten bronze, X-ray diffraction and electron diffraction study, 134, 344

Sb-(W,V)-O system, Aurivillius-related phases in, structure and properties, **128**, 30

Zn(Mg)_{1-x}Cu_xSb₂O₆, trirutile-type compounds, Cu²⁺ polyhedra in, geometry and electronic structure, 131, 263

ZrSi_{0.7}Sb_{1.3}, ZrSn_{0.4}Sb_{1.6}, and ZrGeSb: family containing ZrSiS-type and β -ZrSb₂-type compounds, **134**, 388

Arcaine sulfate

FT-IR, Raman, and SERS spectra, 133, 423

Cd₈As₇Cl: novel pnictidohalide with new structure type, **134**, 282 GaAs, zinc blende crystals, linear electro-optic coefficient, 130, 54 InAs, zinc blende crystals, linear electro-optic coefficient, 130, 54

K₅In₅Ge₅As₁₄ and K₈In₈Ge₅As₁₇, layered materials, synthesis and crystal structure, 130, 234

 $LiMnAsO_4(OD)$ (X = P,As), magnetic structure, 132, 202

(Mg,Ni)₂(OH)(AsO₄), structural and spectroscopic studies, 132, 107

 $NaCa_2M_2^{2+}(AsO_4)_3$ ($M^{2+}=Mg,Ni,Co$), cationic substitution effects on garnet-alluaudite polymorphism, 131, 290

NaCaCdMg₂(AsO₄)₃, alluaudite-like structure, **131**, 298

Na₃In₂(AsO₄)₃

alluaudite-like structure, 134, 31

hydrothermal synthesis and structure, 131, 131

NaMoO₂AsO₄, preparation and crystal structure, 133, 386

NiAs-Ni₂In, related structures in Mn-Sn system, 129, 231

Rb₂Cr₂O(AsO₄)₂, preparation and crystal structure, 134, 22

Sb₂S₃-As₂S₃-Tl₂S glasses, ¹²¹Sb Mössbauer spectroscopy, **133**, 458 W₅As_{2.5}P_{1.5} with one-dimensional vertex-linked W₆ cluster, **131**, 310 A-site cations

size, effect on charge ordering in rare earth manganates, letter to editor, 129, 363

Atomic size

in zinc blende crystals, linear electro-optic coefficient dependence on, 130, 54

Aurivillius-related phases

in Sb-(W,V)-O system, structure and properties, 128, 30

Ball milling

high-energy, in direct synthesis of lanthanum molybdates with La:Mo ratio of 1:1, letter to editor, 132, 443

BaB₆, electronic structure calculations, **133**, 51

BaCoO_{2.94} hexagonal related perovskites, ordering of anionic vacancies in, 128, 130

Ba(CoPO₄)₂·H₂O, lamellar hydrated phosphate with two-dimensional array of Co-O-Co network, 131, 387

BaCuB2O5, noncentrosymmetric pyroborate, synthesis, structure, and properties. 129, 184

Ba₂Cu₃Cl₂O₄, synthesis and properties, 124, 319; comment, 130, 161 Ba-Cu-C-O system, structural equivalence of CO₃ and CuO_x groups,

Ba₆Cu₁₂Fe₁₃S₂₇, synthesis and crystal structure, **128**, 62

 $RBa_2Cu_4O_8$ (R = Gd,Ho), superconductors, Sr substitution in, 128, 310 $Ba_4CuMO_4Cl_4$ (M = Li,Na), Cu(III) oxy-chlorides, synthesis, structure, and electrical and magnetic properties, letter to editor, 129, 360

Ba₂Cu_xZn_{1-x}WO₆ mixed crystals, cooperative Jahn-Teller effect in Raman spectra, 129, 117

 $Ba_2MM'F_7Cl(M,M' = Mn,Fe,Co,Ni,Zn)$, magnetic properties and neutron diffraction study, 131, 198

BaFe₂O₄ and BaFe₁₂O₁₉ particles, synthesis with combustion method, 134, 227

BaGe₂, synthesis, structure, and properties, 133, 501

Ba₂In₂O₅, Brownmillerite-structured, computer simulation study, 128,

Ba₆Mn₂₄O₄₈ with composite tunnel structure, synthesis and HREM study, 132, 239

BaMo₂O₇(s), molar Gibbs energy of formation using solid oxide galvanic cell method, 134, 416

BaNbSe₃, quasi-one-dimensional selenide, phase transitions, 132, 188 BaNb₂Se₅, superconductivity, **132**, 188

 $Ba_{88}Ni_{87}O_{156}(CO_3)_{19}$, synthesis and structure, 128, 220

 $Ba_5M_4O_{15}$ ($M = Ta^{5+}, Nb^{5+}$), luminescence, **134**, 187

BaO-Al₂O₃-AlN system, phase relations, **129**, 66

Ba₁₁Pd₁₁O₂₀(CO₃)₂, synthesis and structure, **128**, 220

BaRuO₃, prepared at ambient pressure and possessing four-layer hexagonal structure, crystal structure refinement, 128, 251

Ba₅Ru_{1.6}W_{0.4}Cl₂O₉, 10-layer perovskite-related oxyhalide, crystal structure, 132, 407

Ba₂(RSb)O₆ (R = Y,Ho), ordered perovskites suitable as substrates for superconducting films, characterization, **128**, 247

Ba₂SnO₄, Pr⁴⁺ doped in, EPR spectra, 130, 250

 $Ba_{2-x}Sr_xDyTaO_6$ (x = 0,1,2), development and dielectric properties, 133, 522

Ba_{5-x}Sr_xNb₄O₁₅, microwave dielectric ceramic resonators, vibrational analysis, **131**, 2

 $(Ba,Sr)_{1+y}UO_{3+x}$, perovskite-related phases, structure and thermodynamics, 131, 341

BaTiO₃, thin film preparation using glycolate precursor, 131, 43

BaTiO₃-LaAlO₃ and BaTiO₃-LaAlO₃-LaTi_{3/4}O₃ systems, chemical reactions and dielectric properties, **129**, 223

BaTl_{0.5}Sb_{0.5}O₃, ordered perovskite, structural analysis, letter to editor, **128**, 323

 $Ba_{1+y}UO_{3+x}$, perovskite-related phases, structure and thermodynamics, 131, 341

Ba₃(VO₄)₂, high-pressure behavior, 132, 156

LnCuBaO₅ (Ln = Yb,Tm,Er,Ho,Dy,Gd), Gibbs free energy of formation, determination by EMF method, 134, 85

 ${\rm Hg_2Ba_2}Ln{\rm Cu_2O_8}_{-\delta}$ ($Ln={\rm Nd-Gd,Dy-Lu}$), synthesis and structural and magnetic characterization, 132, 163

In₂Ba₂CuO_{6- δ} layered cuprate, synthesis and characterization, **131**, 177 $(R_{1-x}, Pr_x)Ba_4Cu_7O_{14+\delta}$ (R=Nd, Eu, Tm), high-pressure synthesis and characterization, **132**, 73

 $Sr_{3-x}Ba_xFe_2O_7$ ($x \le 0.4$), electronic state, magnetism, and electrical transport behavior, **130**, 129

 $Sr_{1-x}Ba_xZrSe_3$ series, structural evolutions in, 130, 20

TeO₂-BaO-TiO₂ glasses, structural and nonlinear optical characterizations, **132**, 411

Tl₅Ba₃Sr₅Cu₃O₁₉, 1201 shear like phase, **128**, 150

 $(Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}$ (0 $\leq x \leq$ 2) with Tl-2212-type structure, preparation and characterization, **132**, 308

YBa2Cu3Ov

electrochemical doping with *M-β*"-Al₂O₃ ionic conductors, **128**, 93 single crystal, structure and electron density, effects of oxygen introduction, **130**, 42

YBa₂Cu₃O_{6+x}, orthorhombic, dependence of lattice parameters on oxygen content, **134**, 356

 $YBa_2Cu_3O_{7-\delta}$, substrates $Ba_{2-x}Sr_xDyTaO_6$ (x=0,1,2) for, development and dielectric properties, **133**, 522

(YBa₂Cu₃O_{7-0.25})₄, superconductive mechanism, **129**, 174

Mg-Fe catalyst surface prepared from hydrotalcite-like precursors, microcalorimetric study, **128**, 73

Batteries

lead acid, production, (3PbO \cdot PbSO $_4 \cdot$ H $_2$ O) formed in, crystal structure, 132, 173

Beryllium

Be-B-bearing materials, parallel electron energy-loss spectroscopy, **133**, 347

UBe₁₃, heavy fermion superconductors, chemical bonding topology, 131, 394

Bismuth

BiLa₂O_{4.5+ δ}, structural transformations, **131**, 64

 $\mathrm{Bi_{13}Mo_4VO_{34}}E_{13}$, $[\mathrm{Bi_{12}O_{14}}E_{12}]_n$ columns and lone pairs E in, 131, 236 $\mathrm{Bi_{1-x}}Ln_x\mathrm{O_{1.5}}$ ($Ln=\mathrm{Sm-Dy}$), ion-ordered phases, stability, thermal behavior, and crystal structure, 129, 98

 δ -Bi₂O₃ fluorite-type structure, Bi–Ln-V–O anionic conductors with (Ln = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), **134**, 219

 Bi_2O_3 — MoO_3 – V_2O_5 system, synthesis, crystal structure, and chemistry, 131, 236

 $Bi_{2-x}Pb_xSr_{1.5}Ca_{1.5}Mn_2O_{9-\delta}$ with 2212 structure, synthesis and crystal chemistry, **132**, 420

Bi_{0.267}Pr_{0.733}SrO_{3-δ}, crystal structure and magnetic properties, neutron diffraction studies, **132**, 182

Bi₂Ru₂O_{7-y} pyrochlores, metallic and nonmetallic properties, structural and electronic factors in, letter to editor, **131**, 405

Bi₂Sn₂O₇, Y-doped, bonding and structural variations in, 131, 317

Bi₂Sr₂CuO₆, antiferromagnetic order, 133, 372

 $\rm Bi_{12}Sr_{18}Fe_{10}O_{52},\ HREM$ study: collapsed structure related to 2212 structure, 129, 214

 $Bi_{1-x}Sr_xMnO_3$, magnetic and electrical properties, 132, 139

Bi–Ln–V–O anionic conductors with δ-Bi₂O₃ fluorite-type structure (Ln = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), **134**, 219

CaBiO₂Cl, disordered variant of Sillen X1 structure, **128**, 115 Hf₈Bi₉, **134**, 26

Pb₂BiO₂PO₄, crystal structure, **133**, 516

 $Sr_{10-n/2}Bi_nFe_{20}O_m$ (n = 4,6,8,10), with high oxygen permeability, synthesis. **130.** 316

SrBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115

 Ti_4TBi_2 (T = Cr,Mn,Fe,Co,Ni), preparation and properties, 133, 400 Ti_8Bi_9 , preparation and crystal structure, 134, 26

Bond-charge calculation

electro-optic coefficients of diatomic crystals, 128, 17

Bonding

in CaFe₂P₂ and CaNi₂P₂, first-principles study, 129, 147

heavy fermion superconductors, chemical bonding topology, 131, 394 icosahedral boron solids, 133, 215

icosahedral clusters of group III elements, 133, 310

icosahedral cluster solids in Al- and B-based compounds, 133, 302

metal-to-metal, in transition metal monocarbides and mononitrides, 128, 121

small boron carbon chains stabilized in rare earth metallic frameworks, 133, 190

in $Ln_2Sn_2O_7$ (Ln = Y,La,Pr,Nd,Sm-Lu) pyrochlores, **130**, 58 in Y-doped Bi₂Sn₂O₇, **131**, 317

Boron

AgI-Ag₂O-B₂O₃-SiO₂ system, reversible color changes in ion-conducting glasses prepared by microwave melting: structural implications, 131, 173

amorphous

fundamental structure, 133, 211

modulated photocurrent measurements, 133, 224

p-type materials, thermoelectric properties, **133**, 314

transient photocurrent studies, 133, 201

atoms in amorphous metallic matrix, impedance spectroscopy and XPS studies, 133, 273

 B_n (n = 12,16,22,32,42,46), clusters with convex and spherical structures, 133, 182

 B_9X_9 (X = Cl,Br,I), syntheses, crystal structures, and electronic structure, 133, 59

 $B_{1\,2}$

bonding in, 133, 302, 310

cluster in β -rhombohedral boron, ground and excited states of icosahedral $B_{12}H_{12}$ cluster simulating, 133, 178

icosahedron, simulation of amorphous boron with, 133, 178

B₁₃, bonding in, 133, 302, 310

BaB₆, electronic structure calculations, 133, 51

BaCuB₂O₅, noncentrosymmetric pyroborate, synthesis, structure, and properties, **129**, 184

B₄C

electronic structure calculations, 133, 51

lattice vibrations, 133, 44

B_{4.23}C, interband critical transition points, 133, 132

B_{4.3}C and ¹⁰B_{4.3}C, interband critical transition points, 133, 132

B_{4.51}C, interband critical transition points, 133, 132

B_{6.28}C, interband critical transition points, 133, 132

B_{6.3}C, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335

B_{7.91}C, dielectric function, description based on superposition of Drude type and hopping type transport, **133**, 335

B_{8.52}C, interband critical transition points, 133, 132

B₉C, lattice vibrations, 133, 44

 $B_{10.37}C$

interaction of optically excited carriers with intraicosahedral phonons, **133**, 125

interband critical transition points, 133, 132

 $B_{13}C_2$, lattice vibrations, 133, 44, 93

B-C-Al compounds with boron carbide structure, IR active phonon spectra, 133, 254

B₄C-C, injection molded ceramics, mechanical properties, 133, 68

B-C-N-O system, syntheses at high pressure and temperature in electron energy-loss spectroscopy, **133**, 365 materials prepared by, **133**, 356

Be-B-bearing materials, parallel electron energy-loss spectroscopy, **133**, 347

 $B_{12}H_{12}$, icosahedral cluster simulating B_{12} cluster in β -rhombohedral boron, ground and excited states, 133, 178

BN

for coatings, matrix, and Si₃N₄-BN composite ceramics, aminoboranes as source for, **133**, 164

cubic, structure and properties, effect of chemically active media, 133, 292

 B_6N_{1-x} , synthesis at high pressure and temperature, 133, 356

B₆N, synthesized at high pressure and temperature, electron energy-loss spectroscopy, **133**, 365

 B_6O_{1-x} , high-strength compounds, structure and bulk modulus, 133, 88 B_6O , FTIR and FT Raman spectra, 133, 260

B₆O-B₄C solid solutions, synthesis at high pressure and temperature electron energy-loss spectroscopy, **133**, 365

preparation and characterization, 133, 356

borosilicate glasses containing fluoride, OH absorption bands due to pyrohydrolysis in, removal, **130**, 330

BP

CVD wafers, thermoelectric properties, 133, 314

films obtained by gas source molecular beam deposition, preparation and electrical properties, **133**, 269

 $B_{12}P_2$

epitaxial growth of rhombohedral single crystalline films by chemical vapor deposition, **133**, 104

Si-doped, interband transitions and phonon spectra, 133, 140

 $B_{12}S_{2-x}$, high-strength compounds, structure and bulk modulus, 133, 88 CaB₆, electronic structure calculations, 133, 51

 $Ca(PO_3)_2$ - CaB_4O_7 - $Na_2B_4O_7$ - Nb_2O_5 , borophosphate glasses, synthesis and second-harmonic generation after poling treatment, **133**, 529

carbon fiber/BN matrix microcomposite, preparation, aminoboranes as BN source for, 133, 164

CeB₆

electronic structure calculations, 133, 51

polar and reticular microhardness anisotropy, 133, 296

in thin film technology, 133, 279

 $Ce_5B_2C_6$, $Ce_5B_4C_5$, and $Ce_{10}B_9C_{12}$, bonding analysis, 133, 190

CeOs₃B₂, heavy fermion superconductors, chemical bonding topology, 131, 394

CeRu₃B₂, heavy fermion superconductors, chemical bonding topology,

CoB₄₉, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335

crystals rich in, rotation-induced relaxation mechanism for strains, 133, 322

doped LiCoO₂, structure and electrochemical properties, 134, 265

DyB₄, polar and reticular microhardness anisotropy, 133, 296

DyB₆, incongruently melting, single crystal growth and properties, 133, 198

ErAlB₁₄, icosahedral solids, electronic properties, **133**, 160

EuB₆, polar and reticular microhardness anisotropy, 133, 296

 $\text{EuB}_{6-X}\text{C}_X$ ($X \approx 0.1$), FT Raman spectroscopy, 133, 264

FeB₂₉, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335

films obtained by gas source molecular beam deposition, preparation and electrical properties, **133**, 269

GdB₄, polar and reticular microhardness anisotropy, 133, 296

HoB₄, polar and reticular microhardness anisotropy, 133, 296

HoB₆, incongruently melting, single crystal growth and properties, 133, 198

icosahedral cluster solids in B-based compounds, 133, 302

icosahedral solids rich in, lattice dynamics, central and noncentral forces on, 133, 215

KB₆, electronic structure calculations, **133**, 51

crystal preparation from Al flux using compound precursors, thermodynamic analysis, **133**, 237

electronic structure calculations, 133, 51

FT Raman spectroscopy, 133, 264

in thin film technology, 133, 279

 $La_{15}B_{14}C_{19}$, bonding analysis, **133**, 190

Li₂Pd₃B and Li₂Pt₃B, with boron in octahedral position, 133, 21

LuB₄, polar and reticular microhardness anisotropy, 133, 296

LuNi₂B₂C superconductor, comparison with nonsuperconducting SrRh₂P₂, 130, 254

(Mo_xCr_{1-x})AlB and (Mo_xW_{1-x})AlB, single crystal growth by metal Al solutions and crystal properties, 133, 36

NdB₆, polar and reticular microhardness anisotropy, **133**, 296 RNi₂B₂C systems

chemical and physical properties, **133**, 169

superconducting and magnetic ordering temperatures for R = Tm or Er, effects of Pd, Pt, and Co dopants, 133, 5

Ni-6 mass% B-58.6 mass% Mo-10 mass% X (X = V,Fe,Co,Ti,Mn,Zr,Nb,W) high-strength boride base hard materials, 133, 243

Ln₇O₆(BO₃)(PO₄)₂ (Ln = La,Nd,Gd,Dy), X-ray powder diffraction and vibrational spectra studies, 129, 45

PrB₆, polar and reticular microhardness anisotropy, 133, 296

preface to 12th International Symposium on Boron, Borides, and Related Compounds, 133, 3

p-type materials, thermoelectric properties, 133, 314

rare earth transition metal borides and their hydrides, low-temperature synthesis, 133, 145

R-Rh-B and R-Rh-B-C systems (R = rare earth), single crystal growth from molten copper flux, 133, 82

 RRh_2B_2C (R = rare earth), synthesis and characterization, 133, 77 α -rhombohedral, electronic structure, electron energy-loss spectroscopic study, 133, 156

 β -rhombohedral

 B_{12} cluster in, icosahedral $B_{12}H_{12}$ cluster simulating, ground and excited states, 133, 178

complete optical spectrum, 133, 129

Fe-doped, Mössbauer spectroscopy and electrical conductivity, 133, 342

Fe- and V-doped icosahedral solids, electronic properties, **133**, 160 interaction of optically excited carriers with intraicosahedral phonons, **133**, 125

interband critical transition points, 133, 132

Li- and V-doped, electronic structure, electron energy-loss spectroscopic study, **133**, 152

metal dopant effects, 133, 302

modulated photocurrent measurements, 133, 224

superposition of Drude type and hopping type transport, **133**, 335 transient photoconduction, analysis under conditions allowing carrier injection from electrode, **133**, 97

transient photocurrent studies, 133, 201

Sc₂BC₂, bonding analysis, 133, 190

Si₃N₄-BN composite ceramic, preparation, aminoboranes as BN source for, **133**, 164

 SmB_4 , polar and reticular microhardness anisotropy, 133, 296 SmB_6

compounds based on, magnetic excitation spectrum, effect of mixed-valences state, **133**, 230

FT Raman spectroscopy, 133, 264

polar and reticular microhardness anisotropy, 133, 296

in thin film technology, 133, 279

SrB₆, electronic structure calculations, 133, 51

 $Sr_4Mn_3(B_{1-x}Mn_x)O_{10}$, related to cubic perovskite structure, synthesis and characterization, **134**, 395

TbB₄, polar and reticular microhardness anisotropy, 133, 296

TbB₆, incongruently melting, single crystal growth and properties, 133, 198

ThB₄, polar and reticular microhardness anisotropy, 133, 296

ThB₆, polar and reticular microhardness anisotropy, 133, 296

thin films, preparation and properties, 133, 100 TiR

nanocrystalline materials, hardness, elastic modulus, and electrical resistivity, 133, 249

PVD coatings, structure and properties, 133, 117

in thin film technology, 133, 279

Ti-B-C system including sections TiC_y-TiB₂ and B₄C_y-TiB₂, **133**, 205 TiB₂-CrB₂-WB₂ supersaturated solid solutions, annealing, phase formation during, **133**, 25

 TiN/TiB_2 nanocrystalline materials, hardness, elastic modulus, and electrical resistivity, 133, 249

TlB₃O₅, crystal structure, **131**, 370

TmB₄, polar and reticular microhardness anisotropy, 133, 296

UB₄, polar and reticular microhardness anisotropy, **133**, 296

VB₂, Czochralski-grown single crystals, microhardness, 133, 113

VB₃₂, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335

 YB_6

electronic structure calculations, 133, 51

incongruently melting, single crystal growth and properties, **133**, 198 in thin film technology, **133**, 279

 YB_{25} , powder X-ray diffraction and electron diffraction studies, 133, 122 YB_{56} and YB_{62} with YB_{66} -type structure, structural refinement, 133, 16 YB_{66}

(100) surface structure and chemistry, 133, 31

interband critical transition points, 133, 132

modulated photoconductivity, 133, 195

reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335

YbB₆, polar and reticular microhardness anisotropy, **133**, 296

YBO₃, structure, 128, 261

 $Y_{17.33}(BO_3)_4(B_2O_5)_2O_{16}$, structure and luminescence, 134, 158

YB₄₁Si_{1.2}, crystal structure, 133, 11

YB₄₄Si_{1.0}, single crystal growth, **133**, 55

Y-Pd-B-C system, chemical and physical properties, 133, 169

ZrB₂, in thin film technology, 133, 279

ZrB₁₂, in thin film technology, **133**, 279

Bromine

 B_9Br_9 , synthesis, crystal structure, and electronic structure, **133**, 59 $Me^+Br \cdot Me^{2+}Br_2 \cdot 6H_2O$ ($Me^+ = K,NH_4,Rb;$ $Me^{2+} = Co,Ni$), crystal-

 $Me^+Br^+Me^-Br_2^+\Theta H_2O$ ($Me^+=K,NH_4,RB$; $Me^{-+}=CO,NI$), crystal lization and structure, **129**, 200

UBrPO₄·2H₂O, structure determination from powder X-ray diffraction data, **132**, 315

Bronzes

blue potassium molybdenum, soft chemical modification, 128, 256

hydrated potassium molybdenum, preparation and thermal decomposition, 132, 330

Na_{0.10}WO₃, with distorted perovskite structure, X-ray and electron diffraction study, **133**, 479

Pb_{0.26}WO₃, X-ray and electron diffraction study, **130**, 176

 MPd_3S_4 (M = La,Nd,Eu), crystal structure and electrical conductivity, 129. 1

 $Sb_{0.16}WO_3$ intergrowth tungsten bronze, X-ray diffraction and electron diffraction study, 134, 344

Brownmillerite structure

Ba₂In₂O₅, computer simulation study, **128**, 137

Brushite

protonic mobility in, IR spectroscopic and neutron scattering studies, 132, 6

Bulk modulus

high-strength boron compounds, 133, 88

C

Cadmium

Cd₈As₇Cl: novel pnictidohalide with new structure type, **134**, 282

 $Cd_3^{II}[(Fe^{II}/Co^{II})(CN)_6]_2 \cdot 14H_2O$, X-ray diffraction and spectral studies, **129**, 17

doping of ZnO thin films, 128, 176

 $La_{2-x}Cd_xRu_2O_{7-\delta}$, pyrochlore oxides, synthesis and characterization, 129, 308

NaCaCdMg₂(AsO₄)₃, alluaudite-like structure, 131, 298

Nd_{0.6}(Ca_{0.4-x}Cd_x)MnO₃ perovskites, charge order-disorder transition, 134, 215

Calcium

 $Bi_{2-x}Pb_xSr_{1.5}Ca_{1.5}Mn_2O_{9-\delta}$ with 2212 structure, synthesis and crystal chemistry, **132**, 420

Ca²⁺, electrochemical doping of oxide ceramics with Ca-β"-Al₂O₃ ionic conductors, 128, 93

Ca₈[Al₁₂O₂₄](MoO₄)₂, structure and high-temperature phase transitions, **129**, 130

CaB₆, electronic structure calculations, 133, 51

CaBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115

 $Ca_3(Cr,Al)_2Si_3O_{12}$ garnets, electron density study, 132, 432

 $Ca_{1-x}Eu_xMnO_3$ (0 $\le x \le 1$) perovskites, magnetic study, 131, 144

CaFe₂P₂, electronic structure and chemical bonding, first-principles study, **129**, 147

CaH₂, self-propagating mechanochemical reaction with hexachlorobenzene, 129, 263

CaHPO₄ and CaHPO₄·2H₂O, protonic mobility in, IR spectroscopic and neutron scattering studies, 132, 6

 $Ca_{1-x}La_xS(x = 0-0.3)$, structural and luminescence properties, 131, 101

 $Ca_4Mo_{18}O_{32}$, with Mo_n (n=2,4,6) cluster chains, anomalous metal-insulator transitions in, 134, 45

 Ca_3N_2 , solid solutions with LaN, formation of defect rock salt nitrides $La_{1-x}Ca_xN_{1-x/3}$, 129, 144

CaNi₂P₂, electronic structure and chemical bonding, first-principles study. **129**, 147

Ca(OD)₂ II prepared at high pressure, structure from powder neutron diffraction, relationship to ZrO₂ and EuI₂ structures, **132**, 267

Ca(OH)₂, incipient reaction with SiO₂ under moderate mechanical stressing, mechanisms: changes in short-range ordering, 130, 284 Ca₃(P₅O₁₄)₂, characterization, 129, 196

Ca(PO₃)₂-CaB₄O₇-Na₂B₄O₇-Nb₂O₅, borophosphate glasses, synthesis and second-harmonic generation after poling treatment, **133**, 529

Ca₃ReO₆, crystal structure, **131**, 305

Ca_{1-x}Sm_xMnO₃, electron-doped, CMR effect in, 134, 198

 δ -Ca_{0.25}V₂O₅·H₂O, crystal structure, **132**, 323

 CaV_2O_5 , crystal structure and spin gap state, letter to editor, 127, 359; addendum, 129, 367

Ca–Zr–O–N system, oxynitride synthesis in ZrO₂-rich part and characterization. 128, 282

CuCa₂(HCOO)₆, thermal decomposition, 132, 235

LaCaAlO₄, K₂NiF₄-type aluminate single crystals, decomposition processes in, X-ray diffraction study, 134, 132

 $\text{La}_{1-x}\text{Ca}_x\text{N}_{1-x/3}$ (0 < x < 0.7), defect rock salt nitrides prepared from LaN and Ca_3N_2 , 129, 144

 $NaCa_2M_2^{2+}(AsO_4)_3$ ($M^{2+}=Mg,Ni,Co$), cationic substitution effects on garnet–alluaudite polymorphism, **131**, 290

NaCaCdMg₂(AsO₄)₃, alluaudite-like structure, 131, 298

Nd_{0.6}(Ca_{0.4-x}Cd_x)MnO₃ perovskites, charge order–disorder transition, 134. 215

Pr_{0.5}Ca_{0.5}MnO₃, insulator-metal transition induced by Cr and Co doping, letter to editor, 130, 162

 $(Sr,Ca)_4Cu_6O_{10}$ three-leg-ladder compound, X-ray single-crystal structure analysis, ${\bf 134,}~427$

SrO-CaO-CuO system under high pressure, compounds and phase relations, 132, 274

zirconolite-4M substituted with Nd, analysis and structure, 129, 346 Calorimetry

thermodynamics of $K_2U_4O_{12}$ and $K_2U_4O_{13}$, 132, 342

η-Carbide structure

unique, synthesis of Fe₄W₂N with, 134, 302

Carbon

 $[Al_3P_4O_{16}]^3 - 3[CH_3CH_2NH_3]^+$, nonaqueous synthesis and characterization, **129**, 37

anhydrous ethylenediamine trimolybdate, hydrothermal synthesis and crystal structure, letter to editor, **132**, 224

Ba-Cu-C-O system, structural equivalence of CO₃ and CuO_x groups, 129, 165

 $Ba_{88}Ni_{87}O_{156}(CO_3)_{19},$ synthesis and structure, 128, 220

Ba₁₁Pd₁₁O₂₀(CO₃)₂, synthesis and structure, **128**, 220

B₄C

electronic structure calculations, 133, 51

lattice vibrations, 133, 44

 $B_{4.23}C$, interband critical transition points, 133, 132

B_{4.3}C and ¹⁰B_{4.3}C, interband critical transition points, **133**, 132

B_{4.51}C, interband critical transition points, **133**, 132

 $B_{6.28}C$, interband critical transition points, 133, 132

B_{6.3}C, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335

B_{7.91}C, dielectric function, description based on superposition of Drude type and hopping type transport, **133**, 335

 $B_{8.52}C$, interband critical transition points, 133, 132

B₉C, lattice vibrations, 133, 44

B_{10.37}C

interaction of optically excited carriers with intraicosahedral phonons, **133**, 125

interband critical transition points, 133, 132

 $B_{13}C_2$, lattice vibrations, 133, 44, 93

B-C-Al compounds with boron carbide structure, IR active phonon spectra, 133, 254

B₄C-C, injection molded ceramics, mechanical properties, 133, 68

B-C-N-O system, syntheses at high pressure and temperature in electron energy-loss spectroscopy, 133, 365

materials prepared by, 133, 356

 $B_6O{-}B_4C$ solid solutions, synthesis at high pressure and temperature electron energy-loss spectroscopy, 133, 365

preparation and characterization, 133, 356

 R_4C_5 (R = Y,Gd,Tb,Dy,Ho), crystal structure, **132**, 294

carbon black, as sintering aid for B₄C, 133, 68

carbon fiber/BN matrix microcomposite, preparation, aminoboranes as BN source for, 133, 164

 C_6Cl_6 , self-propagating mechanochemical reaction with CaH_2 , **129**, 263 $Cd_3^{II}[(Fe^{III}/Co^{III})(CN)_6]_2 \cdot 14H_2O$, X-ray diffraction and spectral studies, **129**, 17

 $Ce_5B_2C_6$, $Ce_5B_4C_5$, and $Ce_{10}B_9C_{12}$, bonding analysis, 133, 190

 $(CH_3NH_3)_2M(II)(SO_4)_2 \cdot 6H_2O$ (M(II) = Cu,Zn,Ni), IR and Raman spectra, 133, 407

C₂₉H₃₀N₅O₄S₂Ru, crystal structure, 132, 60

 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)]$, synthesis and characterization, 128, 318

Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)], two-dimensional solid with pillared layers, synthesis and structure, **132**, 144

CuCa₂(HCOO)₆, thermal decomposition, 132, 235

[Cu(II)(μ-3,5-dimethylpyrazolate)(μ-OH)], antiferromagnetic coupling, 132, 24

Cu₂Fe(CN)₆, interaction with silver ions in solution, 132, 399

[Cu(II)(6-mercaptopurinolate²⁻)]_n, magnetic study, 132, 78

Cu_xMn_{1-x}(HCOO)₂·2H₂O mixed crystals, thermal decomposition to copper-manganese oxides, **133**, 416

Cu₂(OH)₃(CH₃COO)·H₂O, preparation, characterization, and *ab initio* X-ray powder diffraction, **131**, 252

[Cu(II)(μ -pyrazolate)(μ -OH)], antiferromagnetic coupling, 132, 24

 $\text{EuB}_{6-X}\text{C}_X$ ($X \approx 0.1$), FT Raman spectroscopy, 133, 264

[Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], hydrothermal synthesis, crystal structure, and magnetic properties, **134**, 349

Ga(CN)₃, disordered crystal structure, 134, 164

graphite, BN coating on, preparation, aminoboranes as BN source for, 133, 164

KNa(C₄H₄O₆)·4H₂O, structure, **131**, 350

 $K/V/P/N(C_2H_5)_3/H_2O$ hydrothermal system, analysis at 473 K, **134**, 286 La₁₅B₁₄C₁₉, bonding analysis, **133**, 190

LiKCO₃, crystal structure, neutron powder diffraction study, 128,

LuNi₂B₂C superconductor, comparison with nonsuperconducting SrRh₂P₂, **130**, 254

4-methylbenzeneamine, solid-solid reactions with CuCl₂·2H₂O, CoCl₂·6H₂O, and NiCl₂·6H₂O, **132**, 291

[Mg $_{0.174}$ Ga $_{0.256}$ (OH) $_2$](CO $_3$) $_{0.134}\cdot$ mH $_2$ O, synthesis, characterization, and 1H and 71 Ga MAS NMR, 131, 78

Na₃Eu(CO₃)₃, structural and optical studies, 132, 33

 $NaO_{0.44}C_{5.84}$, graphite intercalation compound with sodium and peroxide, 131, 282

 $N(CH_3)_4 \cdot Zn(H_2PO_4)_3$, molecular cluster, synthesis and crystal structure, 131, 363

N(CH₃)₄·Zn(HPO₄)(H₂PO₄), open framework phase built up from low-density 12-ring topology, synthesis and crystal structure, **131**, 363

NH₂CH=NH₂SnI₃ cubic perovskite and related systems, synthesis, resistivity, and thermal properties, **134**, 376

[NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganicorganic layers, synthesis and characterization, **132**, 229

RNi₂B₂C systems

chemical and physical properties, 133, 169

superconducting and magnetic ordering temperatures for R = Tm or Er, effects of Pd, Pt, and Co dopants, 133, 5

 $Ln_5Os_3C_{4-x}$ (Ln = La-Nd,Sm), preparation and crystal structure, 131, 49

 $[PMo_{4.27}W_{7.73}O_{40}^{6-}][H_3N(CH_2)_6NH_3^{2+}]_3$, hydrothermal synthesis and structure, 129, 257

(Pr/La)Co(CN)₆·5H₂O, mixed cationic systems, synthesis and crystal structure, 129, 12

 RRh_2B_2C (R = rare earth)

single crystal growth from molten copper flux, 133, 82 synthesis and characterization, 133, 77

Sc₂BC₂, bonding analysis, 133, 190

Sn(O₃PCH₂CH₃) layered phase, room-temperature synthesis and structural characterization, 132, 438

Ti-B-C system including sections TiC_v-TiB₂ and B₄C_v-TiB₂, 133, 205 U₂PtC₂, heavy fermion superconductors, chemical bonding topology, **131,** 394

VC, metal-to-metal bonding in, 128, 121

Y-Pd-B-C system, chemical and physical properties, 133, 169

Zn(CN)2, disordered crystal structure, 134, 164

Carbonates

LiClO₄-carbonates electrolytes, electrochemical intercalation of Li ions into polyparaphenylene in, 132, 434

Cation ordering

in [(Tl,M)O] layers of 1201-based cuprate, similarity to ordering in fcc-based alloys, 132, 113

Cation sublattices

in ABO₄ structures, 129, 82

Cell parameter

elementary, of synthetic oxides-garnets, empirical formula for calculation of, **134**, 338

Ceramics

Ba_{5-x}Sr_xNb₄O₁₅ microwave dielectric resonators, vibrational analysis, **131,** 2

fluoridated PZT, for powder transducers, 130, 103

injection molded, B₄C-C, mechanical properties, 133, 68

oxides, electrochemical doping with $M-\beta''$ -Al₂O₃ ionic conductors, 128, 93

Si₃N₄/BN composite, preparation, aminoboranes as BN source for, 133, 164

Cerium

Ag₂Ce(H₂O)(NO₃)₅, structure and thermal decomposition, temperature-dependent X-ray powder diffraction study, 132, 361

AlCeO₃, cation arrays in perovskite-type compounds, 128, 69 CeB₆

electronic structure calculations, 133, 51

polar and reticular microhardness anisotropy anisotropy, 133, 296 in thin film technology, 133, 279

 $Ce_5B_2C_6$, $Ce_5B_4C_5$, and $Ce_{10}B_9C_{12}$, bonding analysis, 133, 190

Ce₃Cu₄P₄O₂, synthesis, crystal structure, and properties, 129, 250

CeCu₂Si₂, heavy fermion superconductors, chemical bonding topology, 131, 394

CeOs₃B₂, heavy fermion superconductors, chemical bonding topology, **131,** 394

 $Ce_5Os_3C_{4-x}$, preparation and crystal structure, 131, 49

CeO₂/SiO₂ systems, spreading and phase transformations in, 131, 121 CeRh₂B₂C, synthesis and characterization, 133, 77

CeRu₃B₂, heavy fermion superconductors, chemical bonding topology, **131.** 394

CeRu₃Si₂, heavy fermion superconductors, chemical bonding topology, **131,** 394

CeRu₄Sn₆, crystal structure, specific heat, and ¹¹⁹Sn Mössbauer spectroscopy, 134, 326

γ-Ce₂S₃, doped and undoped, band electronic structure study through LMTO-TB calculations, 128, 197

CeTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, 130, 277

 $Cu_x(CeS)_{1+v}(NbS_2)_2$, phase transition, 134, 99

50Na₂O-49P₂O₅-0.5Eu₂O₃-0.5CeO₂: fluorescent photosensitive glass for optical memory and fluorescence holography, 134, 362

 $(Nd_{2-0.125}Ce_{0.125}CuO_{4-0.625})_{2\times 4}$, superconductive mechanism, 129, 174

Pd/CeO₂/SiO₂ systems, spreading and phase transformations in, 131, 121

 $(R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$ (R = Nd,Sm,Eu), structural properties and oxygen stoichiometry, 133, 445

(Pr_{1.5}Ce_{0.5})Sr₂Cu₂TaO_{10-δ}, structural properties and oxygen stoichiometry, 133, 445

sol-gel alumina doped with, X-ray diffraction, FTIR, and NMR studies, **128,** 161

(YO_{1.5})_{0.2}(CeO₂)_{0.8}, reaction at interface with yttria-stabilized zirconia, TEM study, 129, 74

Cermets

high-strength boride base hard materials, effects of alloying elements, **133**, 243

Cesium CsIn(MoO₄)₂ and CsIn(WO₄)₂, vibrational characteristics, 129, 287

Cs₂KEuCl₆, crystal structure by powder x-ray diffraction, 132, 1

Cs₂KTbCl₆, crystal structure by powder x-ray diffraction, 132, 1

CsMo₆O₁₀(Mo₂O₇)(PO₄)₄, synthesis, crystal structure, and magnetic properties, 128, 233

Cs₃Sb₂I₉, reconstructive phase transformation and kinetics by means of Rietveld analysis of X-ray diffraction and 127I NQR, 134, 319

 $Cs_4Te_xSe_{16-x}$ (x = 1,4) and $Cs_4Te_{9.74}Se_{13.26}$, with ordered Se/Te rings and chains, methanolothermal design and structure, 134, 364 CsTiSi₂O_{6.5}

crystal structure, neutron and X-ray diffraction study, 130, 97 EXAFS and XANES studies, 129, 206

Cs₂TiSi₆O₁₅, crystal structure, 131, 38

Cs₂V₄O₁₁ with unusual V–O coordinations, crystal structure, 134, 52

Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)], two-dimensional solid with pillared layers, synthesis and structure, 132, 144

Chain structure

 $Na_3M(OH)(HPO_4)(PO_4)$ (M = Al,Ga), 128, 21

Chalcogen rings

heteronuclear, $Cs_4Te_xSe_{16-x}$ (x = 1,4) and $Cs_4Te_{9.74}Se_{13.26}$ with ordered Se/Te rings and chains, methanolothermal design and structure, 134, 364

Charge-discharge process

in LiMn₂O₄, in situ XAFS study, letter to editor, 133, 586

Charge ordering

in Nd_{0.6}(Ca_{0.4-x}Cd_x)MnO₃ perovskites: charge order-disorder transition, 134, 215

in rare earth manganates, dependence on size of A-site cations, letter to editor, 129, 363

Charge transfer

geminal, in superconductivity, 129, 174

Chemical diffusion coefficient

 $Ag_{1.92}$ Te at 160°C, **130**, 140

Chemical lithium insertion

In₁₆Fe₈S₃₂ spinel, structure and local environment following, 134, 238

Chemical vapor deposition

epitaxial growth of rhombohedral B₁₂P₂ single crystalline films by, 133, 104

preparation of boron thin films, 133, 100

Chimie douce reactions

changes in magnetic coupling after, analysis: magnetic structures of $LiMnXO_4(OD)$ (X = P,As), **132**, 202

 $(H_3O)Yb_3F_{10} \cdot H_2O$ synthesis, 128, 42

Ba₂Cu₃Cl₂O₄, synthesis and properties, 124, 319; comment, 130, 161

Ba₄CuMO₄Cl₄ (M = Li,Na), Cu(III) oxy-chlorides, synthesis, structure, and electrical and magnetic properties, letter to editor, **129**, 360

Ba₂MM'F₇Cl (M,M' = Mn,Fe,Co,Ni,Zn), magnetic properties and neutron diffraction study, **131**, 198

Ba₅Ru_{1.6}W_{0.4}Cl₂O₉, 10-layer perovskite-related oxyhalide, crystal structure, **132**, 407

B₉Cl₉, synthesis, crystal structure, and electronic structure, 133, 59

CaBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115

C₆Cl₆, self-propagating mechanochemical reaction with CaH₂, **129**, 263 Cd₈As₇Cl: novel pnictidohalide with new structure type, **134**, 282

 $CoCl_2 \cdot 6H_2O$, solid-solid reactions with 4-methylbenzeneamine, 132,

Cs₂KEuCl₆, crystal structure by powder x-ray diffraction, 132, 1

Cs₂KTbCl₆, crystal structure by powder x-ray diffraction, 132, 1

CuCl₂·2H₂O, solid-solid reactions with 4-methylbenzeneamine, 132, 291

LiClO₄-carbonates electrolytes, electrochemical intercalation of Li ions into polyparaphenylene in, **132**, 434

Li₄NCl, preparation and crystal structure, 128, 241

Li₅NCl₂, ordered and disordered phases, preparation and crystal structure, 130, 90

(ND₄)₂PdCl₆, antifluorite, phase analysis, 131, 221

NiCl₂·6H₂O, solid-solid reactions with 4-methylbenzeneamine, 132,

Pb₂Sr₂Cu₂TaO₈Cl, layered cuprate with hematophanite structure, synthesis and characterization, **130**, 154

SrBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115

UCIPO₄·2H₂O, structure determination from powder X-ray diffraction data, 132, 315

Chromium

Ca₃(Cr,Al)₂Si₃O₁₂ garnets, electron density study, 132, 432

CrN, synthesis from ammonolysis of Cr₂S₃, 134, 120

Cr₂O₃ microcrystal surface, chemical behavior of Sn dopant atoms on, Mössbauer study, 132, 284

Cr₂S₃, ammonolysis: synthesis of CrN, **134**, 120

CrWN₂, chemical synthesis and crystal structure, 128, 185

CrZr_{0.75}Nb_{0.25}F₆, antiferrodistortive order in solid solution, **131**, 231 doping of Pr_{0.5}Ca_{0.5}MnO₃, induction of insulator–metal transition, letter to editor, **130**, 162

 $\text{LiCr}_y \text{Mn}_{2-y} \text{O}_4$ (0 $\leq y \leq$ 1), structure modifications induced by electrochemical Li deintercalation, Rietveld analysis, **132**, 372

 $(Mo_xCr_{1-x})AlB$, single crystal growth by metal Al solutions and crystal properties, 133, 36

Nd(Cr_{1-x}Fe_x)O₃, relationship of crystal structure and electrical properties. **131.** 108

 $Nd(Cr_{1-x}Ni_x)O_3$, electrical properties, effect of spin state of Ni^{3+} ions, 134, 382

 $NiCr_2S_4$, structure and magnetism, powder neutron diffraction study, 134, 110

Rb₂Cr₂O(AsO₄)₂, preparation and crystal structure, 134, 22

Rb_{0.62}Cr₅Te₈ pseudo-hollandite, synthesis, crystal structure, and electronic band structures of Rb_xCr₅Te₈ phases, **131**, 326

SbCrSe₃ 1D ferromagnet, structure determination by HREM image analysis, 132, 257

Sr₂CuCrO₃S, crystal structure, 134, 128

tetrahedral oxo and hydroxo Cr(IV) clusters, valence stabilization, mixed crystal chemistry, and electronic transitions, 128, 1

ThCr₂Si₂-type transition metal compounds, LMTO band structure calculations, **130**, 254

 TiB_2 – CrB_2 – WB_2 supersaturated solid solutions, annealing, phase formation during, 133, 25

Ti₄CrBi₂, preparation and properties, 133, 400

Y₃(Al,Cr)₂Al₃O₁₂ garnets, electron density study, 134, 182

[Zn-Cr-SO₄] lamellar double hydroxides, selective synthesis, 130, 66

Citric acid

in synthesis of LaMnO_{3+ δ} by firing gels, **129**, 60

Cluster model

for cubic plastic phase of ethanol, letter to editor, 130, 167

Cluster phases

rare-earth metal iodides with transition metal interstitials, 129, 277

CMR effect

in electron-doped Ca_{1-x}Sm_xMnO₃, **134**, 198

Cobalt

Ba₂CoM'F₇Cl (M' = Mn,Fe,Co,Ni), magnetic properties and neutron diffraction study, **131**, 198

BaCoO_{2.94} hexagonal related perovskites, ordering of anionic vacancies in, **128**, 130

Ba(CoPO₄)₂·H₂O, lamellar hydrated phosphate with two-dimensional array of Co-O-Co network, **131**, 387

 $Me^+ Br \cdot CoBr_2 \cdot 6H_2O$ ($Me^+ = K, NH_4, Rb$), crystallization and structure, **129**, 200

Cd^{II}₃[(Fe^{II}/Co^{III})(CN)₆]₂·14H₂O, X-ray diffraction and spectral studies, 129, 17

 An_2Co_2X (An = Pu,Am; X = In,Sn), synthesis, crystal chemistry, and physical properties, **134**, 138

CoB₄₉, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335

CoCl₂·6H₂O, solid–solid reactions with 4-methylbenzeneamine, 132,

Co₃Fe₂(SeO₃)₆· 2H₂O, synthesis, crystal structure, and IR and Mössbauer spectroscopy, **131**, 54

Co(II) α-hydroxide, hydrotalcite-like phases, 128, 38

 $(Co,Mg)_{10n-2}Ge_{3n+1}O_{16n}$, structure, 130, 9

doping of Pr_{0.5}Ca_{0.5}MnO₃, induction of insulator–metal transition, letter to editor, **130**, 162

effect on superconducting and magnetic ordering temperatures in RNi_2B_2C (R = Tm,Er), 133, 5

Hf₂CoP, structure and characterization, 131, 379

La₂ICo₂, condensed cluster phase, 129, 277

La₂O₃-Co-Co₂O₃ system, thermogravimetric study at 1100 and 1150°C, **131**, 18

La_{0.6}Sr_{0.4}Co_{1-y}Fe_yO_{3- δ} (y=0-0.6), thermodynamic quantities and defect structure, high-temperature coulometric titration studies, **130**, 302

 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$, Coulometric titration at high temperature: electronic band structure effect on nonstoichiometry behavior, 133, 555

 $LiCoO_2$, boron-doped, structure and electrochemical properties, 134, 265

NaCa₂Co₂⁺(AsO₄)₃, cationic substitution effects on garnet–alluaudite polymorphism, **131**, 290

NaCoPO₄

polymorph with edge-sharing Co²⁺ octahedral chains, synthesis and characterization, **131**, 160

with trigonal bipyramidal Co²⁺ and tunnel structure, **129**, 328

Na₂CoSi₄O₁₀, magnetic behavior, **131**, 335

Ni-6 mass% B-58.6 mass% Mo-10 mass% Co, high-strength boride base hard materials, 133, 243

 $(Pr/La)Co(CN)_6 \cdot 5H_2O$, mixed cationic systems, synthesis and crystal structure, 129, 12

Ti₄CoBi₂, preparation and properties, 133, 400

YCoO₃, structure from neutron diffraction, 130, 192

Zr₂CoP, structure and characterization, 131, 379

Columbite

MgNb₂O₆, crystal structure refinement from neutron powder diffraction data, **134**, 76

Combustion method

synthesis of fine ferrite particles, 134, 227

Complex structures

description from stackings of UGP, 128, 52

Computer simulation

Ba₂In₂O₅ with Brownmillerite structure, 128, 137

lanthanum magnesium hexaaluminate defect energetics and crystal chemistry, 130, 199

Conductors

Bi–Ln–V–O anionic conductors with δ-Bi₂O₃ fluorite-type structure (Ln = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), **134**, 219

two-dimensional, $TeMo_5O_{16}$, synthesis and crystal structure, 129, 303 Coordination polyhedra

in ABO₄ structures, 129, 82

Copper

AlSr₂YCu₂O₇, structural order/disorder in, 133, 434

BaCuB₂O₅, noncentrosymmetric pyroborate, synthesis, structure, and properties, **129**, 184

Ba₂Cu₃Cl₂O₄, synthesis and properties, **124**, 319; comment, **130**, 161 Ba–Cu–C–O system, structural equivalence of CO₃ and CuO_x groups, **129**, 165

Ba₆Cu₁₂Fe₁₃S₂₇, synthesis and crystal structure, 128, 62

RBa₂Cu₄O₈ (R = Gd,Ho), superconductors, Sr substitution in, **128**, 310 Ba₄CuMO₄Cl₄ (M = Li,Na), Cu(III) oxy-chlorides, synthesis, structure, and electrical and magnetic properties, letter to editor, **129**, 360

 ${\rm Ba_2Cu_xZn_{1-x}WO_6}$ mixed crystals, cooperative Jahn-Teller effect in Raman spectra, 129, 117

Bi₂Sr₂CuO₆, antiferromagnetic order, 133, 372

CeCu₂Si₂, heavy fermion superconductors, chemical bonding topology, **131**, 394

(CH₃NH₃)₂Cu(II)(SO₄)₂·6H₂O, IR and Raman spectra, 133, 407

 CuX_4 (X = O,S,Se), edge-sharing square planar units, transition metal compounds with, square planar to rectangular distortion in, 128, 181

CuAl₂, structural relationship to SiF₄, **132**, 151; *erratum*, **134**, 431 *Ln*CuBaO₅ (*Ln* = Yb,Tm,Er,Ho,Dy,Gd), Gibbs free energy of formation, determination by EMF method, **134**, 85

CuCa₂(HCOO)₆, thermal decomposition, 132, 235

CuCl₂·2H₂O, solid-solid reactions with 4-methylbenzeneamine, 132,

[Cu(II)(μ -3,5-dimethylpyrazolate)(μ -OH)], antiferromagnetic coupling, 132, 24

Cu₂Fe(CN)₆, interaction with silver ions in solution, 132, 399

[Cu(II)(6-mercaptopurinolate²⁻)]_n, magnetic study, 132, 78

 $Cu_xMn_{1-x}(HCOO)_2 \cdot 2H_2O$ mixed crystals, thermal decomposition to copper-manganese oxides, 133, 416

CuMoO₄, p-T phase diagram, 132, 88

CuNbOF₅·4H₂O, infrared spectroscopy, **133**, 576

Cu₂(OH)₃(CH₃COO)· H₂O, preparation, characterization, and *ab initio* X-ray powder diffraction, **131**, 252

Ln₃Cu₄P₄O₂ (Ln = La,Ce,Nd), synthesis, crystal structure, and properties, **129**, 250

[Cu(II)(μ -pyrazolate)(μ -OH)], antiferromagnetic coupling, 132, 24

 $ACu_{7-x}S_4$ (A = Tl,K,Rb), electrical resistivity anomalies and superlattice modulations, role of vacancy ordering, **134**, 5

CuSb₂O₆, dimorphism, solid state and EPR study, 131, 263

 $Cu_x(MS)_{1+y}(NbS_2)_2$ (M = Ce,Sm), phase transition, 134, 99

doping of ZnO thin films, 128, 176

 ${\rm Hg_2Ba_2}Ln{\rm Cu_2O_8}_{-\delta}$ ($Ln={\rm Nd-Gd,Dy-Lu}$), synthesis and structural and magnetic characterization, 132, 163

 $In_2Ba_2CuO_{6-\delta}$, layered cuprate, synthesis and characterization, **131**, 177 LaCuO_{3-y} ($0 \le y \le 0.5$), copper valence and properties, control by oxygen content adjustment, **130**, 213

La₂CuO_{4+δ}, electrochemically oxidized particles prepared by sol–gel method, structural characterization, **131**, 246

La₂Cu(SeO₃)₄, synthesis and crystal structure, **133**, 572

La_{2-x}Sr_xCuO_{4-δ}, defect chemistry: oxygen nonstoichiometry and thermodynamic stability, 131, 150

 $La_{2-x}Sr_{2x}Cu_{1-x}M_xO_4$ (M = Ti,Mn,Fe,Ru), linear Cu–O–M electronic interaction in two dimensions, **128**, 169

Li₃Cu₂SbO₆ with partially ordered rock salt structure, synthesis, 131,

molten flux, single crystal growth in R-Rh-B and R-Rh-B-C (R = rare earth) systems from, 133, 82

Na₂Cu(SO₄)₂·2H₂O, IR and Raman spectra, 133, 407

 $(Nd_{2-0.125}Ce_{0.125}CuO_{4-0.625})_{2\times 4}$, superconductive mechanism, 129, 174

Pb₂Sr₂Cu₂TaO₈Cl, layered cuprate with hematophanite structure, synthesis and characterization, **130**, 154

 $(R_{1-x}, Pr_x)Ba_4Cu_7O_{14+\delta}$ (R=Nd, Eu, Tm), high-pressure synthesis and characterization, **132**, 73

 $(R_{1.5-x} Pr_x Ce_{0.5}) Sr_2 Cu_2 NbO_{10-\delta}$ (R = Nd, Sm, Eu), structural properties and oxygen stoichiometry, **133**, 445

 $(Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta}$, structural properties and oxygen stoichiometry, 133, 445

 $(Sr,Ca)_4Cu_6O_{10}$ three-leg-ladder compound, X-ray single-crystal structure analysis, **134**, 427

Sr₃Cu₂Fe₂O₅S₂, crystal structure, **134**, 128

 Sr_2CuMO_3S (M = Cr, Fe, In), crystal structure, 134, 128

 $Sr_2Cu_2MO_2S_2$ (M = Mn,Zn), synthesis and properties, 130, 319

SrO-CaO-CuO system under high pressure, compounds and phase relations, 132, 274

Tl₅Ba₃Sr₅Cu₃O₁₉, 1201 shear like phase, **128**, 150

 $Tl_{1-x}Sr_2Cu_{1-y}M_{x+y}O_{5-\delta}$ (M = Nb,Ta,W), 1201-based cuprate, cation ordering in, **132**, 113

ultrafine powder, oxidation resistance, improvement by phosphating treatment, 130, 157

YBa2Cu3Ov

electrochemical doping with *M-β"*-Al₂O₃ ionic conductors, **128**, 93 single crystal, structure and electron density, effects of oxygen introduction, **130**, 42

YBa₂Cu₃O_{6+x}, orthorhombic, dependence of lattice parameters on oxygen content, **134**, 356

YBa₂Cu₃O_{7- δ}, substrates Ba_{2-x}Sr_xDyTaO₆ (x = 0,1,2) for, development and dielectric properties, **133**, 522

(YBa₂Cu₃O_{7-0.25})₄, superconductive mechanism, **129**, 174

Zn(Mg)_{1-x}Cu_xSb₂O₆, trirutile-type compounds, Cu²⁺ polyhedra in, geometry and electronic structure, **131**, 263

Coulometric titration

 $La_{0.6}Sr_{0.4}Co_{1-y}Fe_yO_{3-\delta}$ (y=0–0.6) at high temperature, **130**, 302 $La_{1-x}Sr_xCoO_{3-\delta}$ at high temperature, **133**, 555

Cristobalite

related phases in $NaAlO_2$ - $NaAlSiO_4$ system, XRD and electron diffraction study, 131, 24

Crystal chemistry

 An_2T_2X (An = Pu,Am; T = Co,Ir,Ni,Pd,Pt,Rh; X = In,Sn), 134, 138 $Bi_2O_3-MoO_3-V_2O_5$ system, 131, 236

 $Bi_{2-x}Pb_xSr_{1.5}Ca_{1.5}Mn_2O_{9-\delta}$ with 2212 structure, $\boldsymbol{132},\,420$

lanthanum magnesium hexaaluminate, 130, 199

mixed, in tetrahedral oxo and hydroxo Cr(IV), Mn(V), and Fe(VI) clusters, theoretical study, 128, 1

Na₃(MoO)₂(PO₄)₃ with intersecting tunnel structure, 132, 249

 RRh_2B_2C (R = rare earth), 133, 77

 $W_5 As_{2.5} P_{1.5}$ with one-dimensional vertex-linked W_6 cluster, 131, 310 Crystal-field analysis

Am³⁺ in LiYF₄, **129**, 189

Crystal growth

2-amino-5-nitropyridinium chloride, **129**, 22

incongruently melting TbB₆, DyB₆, HoB₆, and YB₆ single crystals, 133, 198

 $(Mo_xCr_{1-x})AlB$ and $(Mo_xW_{1-x})AlB$ single crystals, 133, 36 CrWN₂, 128, 185 R-Rh-B and R-Rh-B-C (R = rare earth) single crystals from molten CrZr_{0.75}Nb_{0.25}F₆, antiferrodistortive order in solid solution, 131, 231 copper flux, 133, 82 Cs₂KEuCl₆, powder x-ray diffraction study, 132, 1 rhomobhedral B₁₂P₂ single crystalline films, epitaxial growth by chem-Cs₂KTbCl₆, powder x-ray diffraction study, **132**, 1 ical vapor deposition, 133, 104 $CsMo_6O_{10}(Mo_2O_7)(PO_4)_4$, 128, 233 VB₂ single crystals grown by Czochralski technique, microhardness, 133, $Cs_4Te_xSe_{16-x}$ (x = 1,4) and $Cs_4Te_{9.74}Se_{13.26}$, 134, 364 113 CsTiSi₂O_{6.5}, neutron and X-ray diffraction study, **130**, 97 YB₄₄Si_{1.0} single crystal, 133, 55 Cs₂TiSi₆O₁₅, 131, 38 Crystallography Cs₂V₄O₁₁ with unusual V-O coordinations, 134, 52 Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)] two-dimensional solid with pillared orientationally disordered phases in two-component systems, 133, 536 Crystals layers, 132, 144 diatomic, bond-charge calculation of electro-optic coefficients, 128, 17 CuMoO₄ phases, 132, 88 CuNbOF₅·4H₂O, disorder in, 133, 576 Crystal structure, see also Structure Ag₂Ce(H₂O)(NO₃)₅, temperature-dependent X-ray powder diffraction $Ln_3Cu_4P_4O_2$ (Ln = La,Ce,Nd), **129**, 250 study, 132, 361 EuI2, relationship to Ca(OD)2 II prepared at high pressure, powder Ag₄(2,2-dimethylglutarate)₂, 134, 332 neutron diffraction study, 132, 267 AgTaS₃, 132, 389 α-Fe₂O₃ doped with Sn and Ti and prepared by hydrothermal methods, Ag₂TiO₃, 134, 17 130, 272 Ag_{1.2}V₃O₈: relationship to Ag₂V₄O_{11-y} and interpretation of physical [Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], **134**, 349 M_3 Fe₂(SeO₃)₆·2H₂O (M = Mg,Co,Ni), 131, 54 properties, **134**, 294 Ag₂VP₂O₈, **130**, 28 Fe_4W_2N with unique η -carbide structure, 134, 302 $AlLnO_3$ (Ln = La, Ce, Pr, Nd, Sm, Ho), perovskite-type compounds, analy- $(Fe_{0.8}W_{0.2})WN_2$, 131, 374 sis on basis of cationic array, 128, 69 Ga(CN)₃, disordered structure, 134, 164 $Al_5Ln_3O_{12}$ (Ln = Gd-Lu), garnet-type compounds, analysis on basis of M_{10n-2} Ge_{3n+1}O_{16n} with M = (Co,Mg) or (Ni,Mg), 130, 9 cationic array, 128, 69 Hf₈Bi₉, 134, 26 $[Al_3P_4O_{16}]^{3-} \cdot 3[CH_3CH_2NH_3]^+, 129, 37$ $Hg_2Ba_2LnCu_2O_{8-\delta}$ (Ln = Nd-Gd,Dy-Lu), 132, 163 anhydrous ethylenediamine trimolybdate, letter to editor, 132, 224 Hg₂Mo₅O₁₆, **128**, 205 Aurivillius-related phases in Sb-(W,V)-O system, 128, 30 $H_xV_2Zr_2O_9 \cdot H_2O$ (x = 0.43), 128, 313 B_9X_9 (X = Cl,Br,I), **133**, 59 $In_2Ba_2CuO_{6-\delta}$ layered cuprate, **131**, 177 Ba(CoPO₄)₂·H₂O, lamellar hydrated phosphate with two-dimensional KAl(HPO₄)₂·H₂O, 132, 47 array of Co-O-Co network, 131, 387 K₅In₅Ge₅As₁₄ layered materials, **130**, 234 BaCuB₂O₅, noncentrosymmetric pyroborate, 129, 184 K₈In₈Ge₅As₁₇ layered materials, **130**, 234 Ba₂Cu₃Cl₂O₄, **124**, 319; comment, **130**, 161 K_2ZnGeO_4 , α and β forms, 134, 59 La₂CuO_{4+δ}, electrochemically oxidized particles prepared by sol-gel Ba₆Cu₁₂Fe₁₃S₂₇, **128**, 62 BaGe₂, 133, 501 method, 131, 246 Ba₂In₂O₅, Brownmillerite-structured, computer simulation study, 128, La₂Cu(SeO₃)₄, **133**, 572 137 $LaFe_xNi_{1-x}O_3$ solid solutions, **133**, 379 BaRuO₃ prepared at ambient pressure and possessing four-layer hexag- La_2IZ_2 (Z = Fe,Co,Ru,Os) condensed cluster phases, 129, 277 onal structure, refinement, 128, 251 La₆MgGe₂S₁₄, 131, 399 Ba₅Ru_{1.6}W_{0.4}Cl₂O₉ 10-layer perovskite-related oxyhalide, **132**, 407 La₆MgSi₂S₁₄, 131, 399 $Ba_2(RSb)O_6$ (R = Y,Ho) ordered perovskites suitable as substrates for La₃MoO₇, 129, 320 superconducting films, 128, 247 leucophosphite, 133, 508 LiKCO₃, neutron powder diffraction study, 128, 156 BaTl_{0.5}Sb_{0.5}O₃ ordered perovskite, letter to editor, **128**, 323 BiLa₂O_{4.5+ δ}, transformations, **131**, 64 Li₄Mn₅O₁₂, refinement with neutron and X-ray powder diffraction data, $Bi_{1-x}Ln_xO_{1.5}$ (*Ln* = Sm-Dy), ion-ordered phases, **129**, 98 130, 74 Bi_2O_3 -MoO₃-V₂O₅ system, **131**, 236 LiMnVO₄, ambient and high-pressure phases, 128, 267 $Bi_{2-x}Pb_xSr_{1.5}Ca_{1.5}Mn_2O_{9-\delta}$, 2212 structure, **132**, 420 Li₃Mo₃O₅(PO₄)₃ with bidimensional connection of MoO₆ octahedra, $Bi_{0.267}Pr_{0.733}SrO_{3-\delta}$, neutron diffraction study, 132, 182 133, 391 $Li_2Na(MoO)_2(PO_4)_3$, 129, 298 Bi₂Sn₂O₇ doped with Y, variations, 131, 317 Bi₁₂Sr₁₈Fe₁₀O₅₂, HREM study, **129**, 214 Li₄NCl, 128, 241 boron-doped LiCoO₂, 134, 265 Li₅NCl₂, ordered and disordered phases, **130**, 90 Li₂Pd₃B and Li₂Pt₃B with boron in octahedral position, 133, 21 boron thin films, 133, 100 $Me^{+}Br \cdot Me^{2} + Br_{2} \cdot 6H_{2}O (Me^{+} = K, NH_{4}, Rb; Me^{2} + Co, Ni), 129, 200$ LiSn₂(PO₄)₃, low-temperature triclinic distortion in, letter to editor, 130, R_4C_5 (R = Y,Gd,Tb,Dy,Ho), 132, 294 322 $Ca_8[Al_{12}O_{24}](MoO_4)_2$, 129, 130 $\text{Li}_3\text{Sr}_2M\text{N}_4 (M = \text{Nb},\text{Ta}), 130, 1$ CaBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115 Li_{0.74}Ti₃O₆, 129, 7 $Ca_{1-x}Eu_xMnO_3$ (0 $\leq x \leq$ 1) perovskites, **131**, 144 Mg_3N_2 , 132, 56 Ca(OD)₂ II prepared at high pressure, relationship to ZrO₂ and EuI₂ MgNb₂O₆ columbite, refinement from neutron powder diffraction data, structures, powder neutron diffraction study, 132, 267 **134.** 76 Ca₃ReO₆, **131**, 305 (Mg,Ni)₂(OH)(AsO₄), 132, 107

structures, powder neutron diffraction study, 132, 267 Ca_3ReO_6 , 131, 305 CaV_2O_5 , letter to editor, 127, 359; addendum, 129, 367 Cd_8As_7Cl : pnictidohalide with new structure type, 134, 282 $CeRu_4Sn_6$: condensed distorted $RuSn_6$ octahedra, 134, 326 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)]$, 128, 318

134, 76 $(Mg,Ni)_2(OH)(AsO_4)$, 132, 107 $Mg_3(PO_4)_2$, high-temperature and high-pressure phase, 129, 341 $A_{1-x}MnO_{3+y}$ (A = La,Eu), 130, 171 RMn_2O_5 (R = La,Pr,Nd,Sm,Eu), refinement, 129, 105 α -MnOOH and γ -MnOOH, 133, 486

Mn-Sn system: NiAs-Ni₂In-related structures, 129, 231 $Sr_4Mn_3(B_{1-x}Mn_x)O_{10}$ related to cubic perovskite structure, 134, 395 MoWO₃(PO₄)₂, **128**, 191 SrPrO₃ perovskite, 132, 337 NaCoPO₄ TeMo₅O₁₆ two-dimensional conductor, **129**, 303 polymorph with edge-sharing Co²⁺ octahedral chains, 131, 160 $Ti_4 TBi_2$ (T = Mn, Fe, Co, Ni), 133, 400with trigonal bipyramidal Co²⁺ and tunnel structure, **129**, 328 Ti₈Bi₉, 134, 26 Na₃Eu(CO₃)₃, 132, 33 $[Ti_2O(PO_4)_2(H_2O)_2]$, 132, 213 Na₃In₂(AsO₄)₃ and Na₃In₂(PO₄)₃, 131, 131 $[Ti_3(PO_4)_4(H_2O)_2] \cdot NH_3$, 132, 213 NaMoO₂AsO₄, 133, 386 Tl₅Ba₃Sr₅Cu₃O₁₉, 1201 shear like phase, **128**, 150 TlB₃O₅, **131**, 370 $Na_3M(OH)(HPO_4)(PO_4)$ (M = Al,Ga), 128, 21 $Na_xTa_3N_5 \ (0 \le x \le 1.4), 132, 394$ U₃Ga₂Ge₃, neutron powder diffraction study, 131, 72 Na₄[(TiO)₄(SiO₄)₃]·6H₂O: rhombohedrally distorted titanosilicate UGe, 129, 113 pharmacosiderite, 134, 409 $UXPO_4 \cdot 2H_2O$ (X = Cl,Br), powder X-ray diffraction study, 132, 315 $\delta - M_{0.25} V_2 O_5 \cdot H_2 O (M = Ca, Ni), 132, 323$ Na_{0.10}WO₃ bronze: distorted perovskite structure, **133**, 479 $N(CH_3)_4 \cdot Zn(H_2PO_4)_3$, molecular cluster, 131, 363 W₅As_{2.5}P_{1.5} with one-dimensional vertex-linked W₆ cluster, 131, 310 N(CH₃)₄·Zn(HPO₄)(H₂PO₄), open framework phase built up from WO₃ at high pressures, single-crystal diffraction studies, 132, 123 low-density 12-ring topology, 131, 363 ε-WO₃ with ferroelectric properties, 131, 9 $Nd(Cr_{1-x}Fe_x)O_3$, relationship to electrical properties, 131, 108 YB₂₅, 133, 122 [NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganic-YB₅₆ and YB₆₂ with YB₆₆-type structure, refinement, 133, 16 YBa₂Cu₃O_v single crystal, effect of oxygen introduction, 130, 42 organic layers, 132, 229 β -(NH₄)₂FeF₅, hydrogen bonding-induced NH₄⁺ ordering at low tem-YBO₃, 128, 261 $Y_{17.33}(BO_3)_4(B_2O_5)_2O_{16}$, **134**, 158 perature, 131, 189 $[NH_4]^+[(Sn_3O)_2(PO_4)_3]^-$, 134, 207 YB₄₁Si_{1.2}, 133, 11 YCoO₃, neutron diffraction study, 130, 192 $(NH_4)_2[(Ti_3O_2)(HPO_4)_2(PO_4)_2], 132, 213$ YFe₂D_{3.5}, distortion in, 133, 568 $(NH_4)_3V_2O_3(VO)(PO_4)_2(HPO_4)$ and NH_4VOPO_4 , 134, 286 NiCr₂S₄, powder neutron diffraction study, 134, 110 zirconolite-4M substituted with Nd, 129, 346 $Ni_{1+x}Fe_{2-2x/3}O_4$ (x = 0.30), **129**, 123 Zn(CN)₂, disordered structure, 134, 164 $Ln_5Os_3C_{4-x}$ (Ln = La-Nd,Sm), 131, 49 ZnO thin films, modification by Ni, Cu, and Cd doping, 128, 176 Zn₃O₂, 132, 56 oxynitrides in ZrO₂-rich part of Ca–Zr–O–N and Mg–Zr–O–N systems, **128.** 282 Zr₂Ni₂In, 128, 289 $M_2M'P$ (M = Zr,Hf; M' = Co,Ni), 131, 379 Zr₂Ni₂Sn, 128, 289 Pb₂BiO₂PO₄, **133**, 516 ZrO2, relationship to Ca(OD)2 II prepared at high pressure, powder PbFe_xV_{6-x}O₁₁ (1 \leq x \leq 1.75), R-type frustrated system, effects of Fe neutron diffraction study, 132, 267 β -Zr(OH)₂(NO₃)₂·H₂O, **128**, 295 substitution, 130, 223 (3PbO·PbSO₄·H₂O), 132, 173 α -Zr(OH)₂(NO₃)₂ · 1.65H₂O, **128,** 295 ZrV_2O_7 from -263 to $470^{\circ}C$, **132**, 355 MPd_3S_4 bronzes (M = La, Nd, Eu), 129, 1 $[PMo_{4,27}W_{7,73}O_{40}^{6-}][H_3N(CH_2)_6NH_3^{2+}]_3$, 129, 257 Czochralski technique Pr₂INi₂, Pr₄I₅Ni, and Pr₃I₃Os condensed cluster phases, **129**, 277 single VB₂ crystals grown by, microhardness, 133, 113 (Pr/La)Co(CN)₆·5H₂O mixed cationic systems, 129, 12 PtSi₂P₂ and PtSi₃P₂, 133, 473 Rb₂Cr₂O(AsO₄)₂, 134, 22 Rb_{0.62}Cr₅Te₈ pseudo-hollandite, 131, 326 1,10-Decanedicarboxylic acid Rb₅VONb₁₄O₃₈, **134**, 10 urea inclusion compound with, temperature-dependent structural prop-Rb₄YbI₆, 128, 66 erties, 128, 273 $RbZn_2(HPO_4)_2(H_2PO_4) \cdot 2H_2O$ and $RbZn(HPO_4)(H_2PO_4) \cdot H_2O$, 134, Decomposition in single crystals of K₂NiF₄-type aluminate LaCaAlO₄, X-ray diffraction RRh_2B_2C (R = rare earth), 133, 77 study, 134, 132 Rochelle salt, 131, 350 thermal, see Thermal decomposition RS-camphor at low temperature, 134, 211 Defect chemistry Ru complex sensitizers of TiO₂ anatase nanopowders, 132, 60 La_{2-x}Sr_xCuO_{4-δ}, oxygen nonstoichiometry and thermodynamic stabil-SbCrSe₃ 1D ferromagnet, HREM image analysis, 132, 257 ity, 131, 150 Sb_{0.16}WO₃ intergrowth tungsten bronze, **134**, 344 Defect energetics $R_{6+x/3}Si_{11}N_{20+x}O_{1-x}$ (R = Y and Gd-Lu), 129, 312 Ba₂In₂O₅ with Brownmillerite structure, computer simulation study, Sm₂ReO₅, 132, 196 **128,** 137 SmTh₂F₁₁, 130, 277 lanthanum magnesium hexaaluminate, 130, 199 $Ln_2Sn_2O_7$ (Ln = Y,La,Pr,Nd,Sm-Lu) pyrochlores, 130, 58 Defect structure Sn(O₃PCH₂CH₃) layered phase at room temperature, **132**, 438 $Ca_{1-x}La_xS$ (x = 0-0.3), **131**, 101 $La_{0.6}Sr_{0.4}Co_{1-y}Fe_yO_{3-\delta} \ \ (y=0\text{--}0.6), \ \ \, \text{high-temperature} \ \ \, \text{coulometric}$ $Sr_{1-x}Ba_xZrSe_3$ series, 130, 20 SrBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115 titration studies, 130, 302 (Sr,Ca)₄Cu₆O₁₀ three-leg-ladder compound, single-crystal X-ray diffraction studies, 134, 427 Ca(OD)₂ II prepared at high pressure, structure from powder neutron Sr₃Cu₂Fe₂O₅S₂, **134**, 128 diffraction, relationship to ZrO2 and EuI2 structures, 132, 267 $LiMnXO_4(OD)$ (X = P,As), magnetic structure, 132, 202 Sr_2CuMO_3S (M = Cr, Fe, In), 134, 128 $Sr_2Cu_2MO_2S_2$ (M = Mn,Zn), 130, 319 (ND₄)₂PdCl₆, antifluorite, phase analysis, 131, 221 Sr_3MgMO_6 (M = Pt,Ir,Rh), 130, 35 YFe₂D_{3.5}, X-ray and neutron powder diffraction studies, 133, 568

Diamond

related stacking of octahedral units of antiprism, (H₃O)Yb₃F₁₀·H₂O prepared by chimie douce synthesis, **128**, 42

Diatomic crystals

electro-optic coefficients, bond-charge calculation, 128, 17

Dielectric function

boron-rich solids in FIR range, analysis on basis of optical reflectivity spectra, 133, 335

icosahedral boron-rich solids and icosahedral quasicrystals, 133, 160

Li- and V-doped β -rhombohedral boron, **133**, 152

α-rhombohedral boron, 133, 156

 β -rhombohedral boron, 133, 129

Dielectric properties

 $Ba_{2-x}Sr_xDyTaO_6$ (x = 0,1,2), **133**, 522

 $BaTiO_3$ -LaAlO₃ and $BaTiO_3$ -LaAlO₃-LaTi_{3/4}O₃ systems, **129**, 223 GaPO₄ thin films, **134**, 91

 $(\text{LaMn}_{1-x}\text{Ti}_x)_{1-y}\text{O}_3 (x \le 0.05), 133, 466$

Dielectric resonators

 $Ba_{5-x}Sr_xNb_4O_{15}$ ceramics, vibrational analysis, 131, 2

1,4-Diethynylbenzene

preferential formation of $C \equiv C - H \cdot \cdot \cdot \pi(C \equiv C)$ interactions in solid state, 134, 203

Diffuse reflectance spectroscopy

(Mg,Ni)₂(OH)(AsO₄), 132, 107

Disorder

cationic and anionic, metastable $LnTh_2F_{11}$ series with, synthesis and characterization, 130, 277

or order, in $A(B'B'')O_3$ perovskite compounds, simple method for judging, **134**, 420

translational, generated by oriented defects in Magneli phases, 131, 215 Dispersion capacity

 Mo^{6+} on α -Fe₂O₃ surface, **129**, 30

Doping

electrochemical, with $M-\beta''$ -Al₂O₃ ionic conductors, 128, 93

LiCoO₂ with boron: structure and electrochemical properties study, **134**, 265

Double salts

 Me^+ Br· Me^{2+} Br₂·6H₂O (Me^+ = K,NH₄,Rb; Me^{2+} = Co,Ni), crystallization and structure, **129**, 200

Drude type transport

and hopping type transport, superposition in boron-rich solids, **133**, 335 Dysprosium

Al₅Dy₃O₁₂, cations arrays in garnet-type compounds, 128, 69

 $Ba_{2-x}Sr_xDyTaO_6$ (x=0,1,2), development and dielectric properties, 133, 522

 $\mathrm{Bi}_{1-x}\mathrm{Dy}_x\mathrm{O}_{1.5}$, ion-ordered phases, stability, thermal behavior, and crystal structure, **129**, 98

Bi–Dy–V–O anionic conductors with δ -Bi₂O₃ fluorite-type structure, 134, 219

DyB₄, polar and reticular microhardness anisotropy, 133, 296

 DyB_6 , incongruently melting, single crystal growth and properties, 133,

Dy₄C₅, crystal structure, 132, 294

 $DyCuBaO_5$, Gibbs free energy of formation, determination by EMF method, 134, 85

 $\mathrm{Dy_7O_6(BO_3)(PO_4)_2}$, X-ray powder diffraction and vibrational spectra studies, **129**, 45

DyRh₃B₂, single crystal growth from molten copper flux, 133, 82

DyRh₄B₄, single crystal growth from molten copper flux, 133, 82

DyRh₂B₂C, synthesis and characterization, 133, 77

 $Dy_{6+x/3}Si_{11}N_{20+x}O_{1-x}$, preparation and crystal structure, **129**, 312

Dy₂Sn₂O₇, structural and bonding trends, **130**, 58

DyTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277

 ${\rm Hg_2Ba_2DyCu_2O_{8-\delta}}$, synthesis and structural and magnetic characterization, 132, 163

Ε

Editorial

editorial appointment of Mercouri G. Kanatzidis and journal changes, 131, 1

Elastic constants

higher order, titanium, 129, 53

Elastic waves

propagating in different directions in Ti, generalized Gruneisen parameters for, 129, 53

Electrical conductivity

AgTaS₃, 132, 389

boron and boron phosphide CVD wafers, 133, 314

Fe-doped β -rhombohedral boron, 133, 342

 $(Fe_{0.8}W_{0.2})WN_2$, **131**, 374

 $La_{2-x}Cd_xRu_2O_{7-\delta}$ pyrochlore oxides, **129**, 308

 $(LaMn_{1-x}Ti_x)_{1-y}O_3 (x \le 0.05)$, 133, 466

 $La_2NiO_{4+\delta}$, 131, 275

magnesium phthalocyanine thin films prepared by vacuum evaporation, 128, 27

NaO_{0.44}C_{5.84} graphite intercalation compound with sodium and peroxide, **131**, 282

 MPd_3S_4 bronzes (M = La, Nd, Eu), 129, 1

 $Sr_{3-x}A_xFe_2O_7$ ($x \le 0.4$; A = Ba,La), 130, 129

 Ti_4TBi_2 (T = Fe,Co,Ni), 133, 400

 $Zn_{2-x}Sn_{1-x}In_{2x}O_{4-\delta}$ spinel, **134**, 192

Electrical properties

Aurivillius-related phases in Sb-(W,V)-O system, 128, 30

Ba₂Cu₃Cl₂O₄, **124**, 319; comment, **130**, 161

 $Ba_4CuMO_4Cl_4$ (M = Li,Na), Cu(III) oxy-chlorides, letter to editor, 129, 360

 $Bi_{1-x}Sr_xMnO_3$, **132**, 139

boron and boron phosphide films obtained by gas source molecular beam deposition, 133, 269

boron thin films, 133, 100

LiMn₂O₄- and Li₂MnO₃-type oxides, 131, 94

 $A_4 \text{Mo}_{18} \text{O}_{32}$ (A = Ca,Y,Gd-Yb) with Mo_n (n = 2,4,6) cluster chains, 134, 45

Nd(Cr_{1-x}Fe_x)O₃, relationship to crystal structure, **131**, 108

Nd(Cr_{1-x}Ni_x)O₃, effect of spin state of Ni³⁺ ions, **134**, 382

PbFe_xV_{6-x}O₁₁ (1 \leq x \leq 1.75), *R*-type frustrated system, effects of Fe substitution, **130**, 223

 $Pr_{2-x}M_xO_{4+\delta}$ (M = La,Sr), 131, 167

ε-WO₃, **131**, 9

ZnO thin films, modification by Ni, Cu, and Cd doping, 128, 176

Zr₂Ni₂In and Zr₂Ni₂Sn, **128**, 289

Electrical resistivity

BaGe₂, **133**, 501

 $Ln_3Cu_4P_4O_2$ (Ln = La,Ce,Nd), **129**, 250

 $ACu_{7-x}S_4$ (A = Tl,K,Rb), anomalies, role of vacancy ordering, **134**, 5 FeNbO₄, **134**, 253

 $In_2Ba_2CuO_{6-\delta}$ layered cuprate, **131**, 177

 $(Mo_xCr_{1-x})AlB$ and $(Mo_xW_{1-x})AlB$, 133, 36

nanocrystalline borides and related compounds, 133, 249

Na₂Ti₂Sb₂O layered tetragonal compound, 134, 422

NbS₂-IrS₂ system, **129**, 242

 $Nd(Cr_{1-x}Ni_x)O_3$, **134**, 382

NH₂CH=NH₂SnI₃ cubic perovskite and related systems, **134**, 376 PtSi₃P₂, **133**, 473

 Pu_2T_2X (T = Co, Ir, Ni, Pd, Pt, Rh; X = In, Sn), 134, 138

Electrochemical deintercalation

lithium in LiCr_yMn_{2-y}O₄ ($0 \le y \le 1$), structure modifications induced by, Rietveld analysis, **132**, 372

```
Electrochemical doping
                                                                                            Electronic structure
  with M-\beta''-Al_2O_3 ionic conductors, 128, 93
                                                                                               Am<sup>3+</sup> in LiYF<sub>4</sub>, 129, 189
Electrochemical intercalation
                                                                                               B_9X_9 (X = Cl,Br,I), 133, 59
  Li ions into polyparaphenylene in LiClO<sub>4</sub>-carbonates electrolytes, 132,
                                                                                               boron carbide and hexaborides, 133, 51
                                                                                               CaFe<sub>2</sub>P<sub>2</sub> and CaNi<sub>2</sub>P<sub>2</sub>, first-principles study, 129, 147
Electrochemical properties
                                                                                               Cu<sup>2+</sup> polyhedra in trirutile-type compounds, 131, 263
  Ag<sub>1,2</sub>V<sub>3</sub>O<sub>8</sub>, 134, 294
                                                                                               force constant determination from, 133, 327
  boron-doped LiCoO<sub>2</sub>, 134, 265
                                                                                               KCu<sub>7-x</sub>S<sub>4</sub>, role of vacancy ordering, 134, 5
Electrolysis
                                                                                               M_2M'P (M = Zr,Hf; M' = Co,Ni), 131, 379
  doped rare earth manganate perovskite crystal synthesis with, letter to
                                                                                               α-rhombohedral boron, electron energy-loss spectroscopic study, 133,
       editor, 130, 327
Electrolytes
                                                                                               β-rhombohedral boron doped with Li and V, electron energy-loss spec-
  LiClO<sub>4</sub>-carbonates, electrochemical intercalation of Li ions into poly-
                                                                                                     troscopic study, 133, 152
                                                                                               Zr<sub>2</sub>Ni<sub>2</sub>In and Zr<sub>2</sub>Ni<sub>2</sub>Sn, 128, 289
       paraphenylene in, 132, 434
Electromechanical properties
                                                                                            Electronic transitions
  PZT-type power ceramics, effect of fluoride introduction into anionic
                                                                                               in tetrahedral oxo and hydroxo Cr(IV), Mn(V), and Fe(VI) clusters,
       sublattice, 130, 103
                                                                                                    theoretical study, 128, 1
Electromotive force measurements
                                                                                            Electron paramagnetic resonance
  Gibbs free energy of formation of LnCuBaO<sub>5</sub> (Ln = Yb,Tm,Er,Ho,
                                                                                               cubic BN, effect of chemically active media, 133, 292
                                                                                               CuSb<sub>2</sub>O<sub>6</sub> trirutile-type compounds, 131, 263
       Dy,Gd), 134, 85
                                                                                               LiMn<sub>2</sub>O<sub>4</sub> and Li<sub>2</sub>MnO<sub>3</sub> coexisting phases, stoichiometry, 128, 80
  thermodynamics of K_2U_4O_{12} and K_2U_4O_{13}, 132, 342
Electron density
                                                                                               Li<sub>8</sub>PrO<sub>6</sub> and Li<sub>8</sub>TbO<sub>6</sub>, 128, 228
  Ag<sub>1.2</sub>V<sub>3</sub>O<sub>8</sub>, 134, 294
                                                                                               (Mg,Ni)<sub>2</sub>(OH)(AsO<sub>4</sub>), 132, 107
  Ca<sub>3</sub>(Cr,Al)<sub>2</sub>Si<sub>3</sub>O<sub>12</sub> garnets, 132, 432
                                                                                               Pr<sup>4+</sup> doped in Sr<sub>2</sub>SnO<sub>4</sub> and Ba<sub>2</sub>SnO<sub>4</sub>, 130, 250
  Z_3Ga_5O_{12} garnets (Z = Nd,Sm,Gd,Tb), 132, 300
                                                                                               Zn(Mg)_{1-x}Cu_xSb_2O_6 trirutile-type compounds, 131, 263
  Y_3X_2Al_3O_{12} garnets (X = Al and (Al,Cr)), 134, 182
  YBa<sub>2</sub>Cu<sub>3</sub>O<sub>v</sub> single crystal, effect of oxygen introduction, 130, 42
                                                                                               optically excited, interaction with intraicosahedral phonons, 133, 125
Electron diffraction
                                                                                            Electro-optic coefficients
  cristobalite-related phases in NaAlO<sub>2</sub>-NaAlSiO<sub>4</sub> system, 131, 24
                                                                                               diatomic crystals, bond-charge calculation, 128, 17
  Na<sub>0.10</sub>WO<sub>3</sub> bronze with distorted perovskite structure, 133, 479
                                                                                            Energy characteristics
  Pb<sub>0.26</sub>WO<sub>3</sub>, 130, 176
                                                                                               superionics Li<sub>4</sub>SiO<sub>4</sub> and Li<sub>4</sub>GeO<sub>4</sub>, 134, 232
  Sb<sub>0.16</sub>WO<sub>3</sub> intergrowth tungsten bronze, single-crystal studies, 134, 344
                                                                                            Enthalpy of formation
  YB<sub>25</sub>, 133, 122
                                                                                               BaMo<sub>2</sub>O<sub>7</sub>(s), 134, 416
Electron doping
                                                                                               binary compounds in Ru-Si, Ru-Ge, and Ru-Sn systems, 133, 439
  Ca<sub>1-x</sub>Sm<sub>x</sub>MnO<sub>3</sub>, analysis of CMR effect, 134, 198
                                                                                               NaMgF<sub>3</sub> perovskites, 132, 131
Electron energy-loss spectroscopy
                                                                                            EPR, see Electron paramagnetic resonance
  electronic structure studies
                                                                                            Erbium
     Li- and V-doped \beta-rhombohedral boron, 133, 152
                                                                                               Al<sub>5</sub>Er<sub>3</sub>O<sub>12</sub>, cations arrays in garnet-type compounds, 128, 69
     α-rhombohedral boron, 133, 156
                                                                                               Bi-Er-V-O anionic conductors with \delta-Bi<sub>2</sub>O<sub>3</sub> fluorite-type structure,
  parallel EELS, Be-B-bearing materials, 133, 347
  syntheses at high pressure and temperature in B-C-N-O system, 133,
                                                                                               ErAlB<sub>14</sub>, icosahedral solids, electronic properties, 133, 160
                                                                                               ErCuBaO<sub>5</sub>, Gibbs free energy of formation, determination by EMF
Electronic band structure
                                                                                                    method, 134, 85
  La_{1-x}Sr_xCoO_{3-\delta}, effect on nonstoichiometry behavior, 133, 555
                                                                                               ErNi<sub>2</sub>B<sub>2</sub>C, superconducting and magnetic ordering temperatures, effects
  Rb<sub>x</sub>Cr<sub>5</sub>Te<sub>8</sub> phases in Rb<sub>0.62</sub>Cr<sub>5</sub>Te<sub>8</sub> pseudo-hollandite, 131, 326
                                                                                                     of Pd, Pt, and Co dopants, 133, 5
  A_2Ru<sub>2</sub>O<sub>7-y</sub> (A = Bi,Pb,Tl,rare earth) pyrochlores, role in metallic and
                                                                                               ErOOH, cation arrays, 131, 358
       nonmetallic properties, letter to editor, 131, 405
                                                                                               Er-Rh-B system, single crystal growth from molten copper flux, 133, 82
  \gamma-Ln_2S_3 (Ln = La, Ce, Pr, Nd), doped and undoped, LMTO-TB calcu-
                                                                                               ErRh2B2C
       lations, 128, 197
                                                                                                  single crystal growth from molten copper flux, 133, 82
  ThCr<sub>2</sub>Si<sub>2</sub>-type transition metal compounds, LMTO band structure cal-
                                                                                                  synthesis and characterization, 133, 77
       culations, 130, 254
                                                                                               \text{Er}_{6+x/3}\text{Si}_{11}\text{N}_{20+x}\text{O}_{1-x}, preparation and crystal structure, 129, 312
                                                                                               Er<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>, structural and bonding trends, 130, 58
  transition metal compounds of edge-sharing square planar units MX_4,
                                                                                               ErTh<sub>2</sub>F<sub>11</sub>, metastable series with cationic and anionic disorder, syn-
       analysis, 128, 181
Electronic conductivity
                                                                                                     thesis and characterization, 130, 277
  Ag_{1.92}Te at 160°C, 130, 140
                                                                                               Hg<sub>2</sub>Ba<sub>2</sub>ErCu<sub>2</sub>O<sub>8-δ</sub>, synthesis and structural and magnetic characteriza-
Electronic properties
                                                                                                     tion, 132, 163
                                                                                            ESR, see Electron paramagnetic resonance
  icosahedral boron-rich solids and icosahedral quasicrystals, 133, 160
  La<sub>3</sub>MoO<sub>7</sub>, 129, 320
                                                                                            Ethanol
  M_2M'P (M = Zr,Hf; M' = Co,Ni), 131, 379
                                                                                               cubic plastic phase, cluster model for, letter to editor, 130, 167
  (Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta} and (R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}
                                                                                               nanocrystalline La<sub>1-x</sub>Sr<sub>x</sub>FeO<sub>3</sub> sensitivity to, effect of Sr content, 130,
       (R = Nd,Sm,Eu), 133, 445
Electronic state
                                                                                            Ethoxide
  LaMnO<sub>3+\delta</sub>, 130, 117
                                                                                               Mn_7Sb_4(\mu_5-O)_2(\mu_4-O)_2(\mu_3-OEt)_2(\mu-OEt)_{16}(HOEt)_2, synthesis and
  Sr_{3-x}A_xFe_2O_7 (x \le 0.4; A = Ba,La), 130, 129
                                                                                                     structural analysis, 134, 312
```

Ethylenediamine trimolybdate

anhydrous, hydrothermal synthesis and crystal structure, letter to editor, 132, 224

Europium

Bi_{1-x}Eu_xO_{1.5}, ion-ordered phases, stability, thermal behavior, and crystal structure. **129.** 98

Bi–Eu–V–O anionic conductors with δ -Bi₂O₃ fluorite-type structure, 134, 219

 $Ca_{1-x}Eu_xMnO_3$ (0 $\le x \le 1$) perovskites, magnetic study, 131, 144

Cs₂KEuCl₆, crystal structure by powder x-ray diffraction, 132, 1

EuB₆, polar and reticular microhardness anisotropy, 133, 296

Eu₂Ba₄Cu₇O_{14+δ}, Pr-doped, high-pressure synthesis and characterization, **132**, 73

 $EuB_{6-X}C_X$ ($X \approx 0.1$), FT Raman spectroscopy, **133**, 264

EuI₂, structure, relationship to structure of Ca(OD)₂ II prepared at high pressure, powder neutron diffraction study, **132**, 267

Eu_{1-x}MnO_{3+y}, orthomanganites with perovskite structure, magnetic study, **130**, 171

 $EuMn_2O_5$, high-oxygen-pressure preparation, structural refinement, and thermal behavior, 129, 105

EuPd₃S₄ bronze, crystal structure and electrical conductivity, **129**, 1

 $(Eu_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$, structural properties and oxygen stoichiometry, 133, 445

Eu₂Sn₂O₇, structural and bonding trends, 130, 58

EuTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277

 ${\rm Hg_2Ba_2EuCu_2O_{8-\delta}}$, synthesis and structural and magnetic characterization, 132, 163

Na₃Eu(CO₃)₃, structural and optical studies, 132, 33

50Na₂O-49P₂O₅-0.5Eu₂O₃-0.5CeO₂: fluorescent photosensitive glass for optical memory and fluorescence holography, **134**, 362

Evaporation

under vacuum, magnesium phthalocyanine thin films prepared by, electrical and optical characterization, **128**, 27

EXAFS, see Extended X-ray absorption fine structure

Excitation spectroscopy

laser selective, Am³⁺ in LiYF₄, **129**, 189

Excitons

doping, in superconductivity, 129, 174

Extended X-ray absorption fine structure

charge-discharge process in LiMn₂O₄, in situ study, letter to editor, 133, 586

CsTiSi₂O_{6.5}, 129, 206

F

Ferroelectricity

ε-WO₃, 131, 9

Ferromagnetism

 $Pr_{1-x}K_xMnO_3$ perovskites (x = 0-0.15), **132**, 98

Ferromagnets

one-dimensional, SbCrSe₃, structure determination by HREM image analysis, **132**, 257

Films, see also Thin films

boron and boron phosphide, obtained by gas source molecular beam deposition, preparation and electrical properties, 133, 269

B₁₂P₂, rhombohedral single crystalline films, epitaxial growth by chemical vapor deposition, 133, 104

Firing gels

in synthesis of LaMnO_{3+ δ} using citric acid, **129**, 60

Flexural strength

B₄C-C injection molded ceramics, 133, 68

Fluorescence spectroscopy

Am³⁺ in LiYF₄, **129**, 189

Fluorescent photosensitive glass

synthesis and characterization: material useful for optical memory and fluorescence holography, **134**, 362

Fluoride

introduction into anionic sublattice of PZT-type power ceramics and effects on electromechanical properties, **130**, 103

Fluorine

 $Ba_2MM'F_7Cl(M,M'=Mn,Fe,Co,Ni,Zn)$, magnetic properties and neutron diffraction study, 131, 198

borosilicate glasses containing fluoride, OH absorption bands due to pyrohydrolysis in, removal, **130**, 330

CrZr_{0.75}Nb_{0.25}F₆, antiferrodistortive order in solid solution, **131**, 231 CuNbOF₅·4H₂O, infrared spectroscopy, **133**, 576

[Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], hydrothermal synthesis, crystal structure, and magnetic properties, **134**, 349

(H₃O)Yb₃F₁₀·H₂O, chimie douce synthesis and ab initio structure determination, **128**, 42

LiYF₄, Am³⁺ in, spectroscopic studies and crystal-field analysis, **129**, 189

NaMgF₃ perovskites, thermochemistry, 132, 131

 β -(NH₄)₂FeF₅, hydrogen bonding-induced NH₄⁺ ordering at low temperature, structural and spectroscopic evidence, **131**, 189

SiF₄, structural relationship to CuAl₂, 132, 151; erratum, 134, 431

LnTh₂F₁₁ (Ln = La–Lu, Y), metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277

Fluorite-type structure

 δ -Bi₂O₃, Bi–Ln-V–O anionic conductors with (Ln = Y,Sm,Eu,Gd,Tb, Dy,Er,Yb), **134**, 219

Force constants

determination by electronic structure, 133, 327

Formamidinium

based cubic perovskite NH₂CH=NH₂SnI₃, and related systems, synthesis, resistivity, and thermal properties, **134**, 376

Formate

CuCa₂(HCOO)₆, thermal decomposition, 132, 235

Fourier transform infrared spectroscopy

arcaine sulfate, 133, 423

B₆O, 133, 260

boron-rich solids, FIR reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335

 $Cd_3^{II}[(Fe^{III}/Co^{III})(CN)_6]_2 \cdot 14H_2O$, **129**, 17

Cu₂(OH)₃(CH₃COO)·H₂O, 131, 252

high-temperature phase formation in sol-gel aluminum titanate, 131, 181

 $MIn(MoO_4)_2$ and $MIn(WO_4)_2$ (M = Li, Na, K, Cs), 129, 287

protonic mobility in brushite and monetite, 132, 6

sol-gel alumina doped with La and Ce, 128, 161

Fracture toughness

B₄C-C injection molded ceramics, 133, 68

FTIR, see Fourier transform infrared spectroscopy

Fused salt electrolysis

doped rare earth manganate perovskite crystal synthesis with, letter to editor, 130, 327

G

Gadolinium

Al₅Gd₃O₁₂, cations arrays in garnet-type compounds, 128, 69

 $Bi_{1-x}Gd_xO_{1.5}$, ion-ordered phases, stability, thermal behavior, and crystal structure, **129.** 98

Bi–Gd–V–O anionic conductors with δ -Bi₂O₃ fluorite-type structure, 134, 219

GdB₄, polar and reticular microhardness anisotropy, 133, 296

GdBa₂Cu₄O₈ superconductor, Sr substitution in, 128, 310

Gd₄C₅, crystal structure, 132, 294

GdCuBaO₅, Gibbs free energy of formation, determination by EMF method, **134**, 85

Gd₃Ga₅O₁₂ garnet, electron density study, 132, 300

 ${\rm Gd_7O_6(BO_3)(PO_4)_2},$ X-ray powder diffraction and vibrational spectra studies, 129, 45

GdRh₃B, single crystal growth from molten copper flux, **133**, 82 GdRh₃B₂, single crystal growth from molten copper flux, **133**, 82 GdRh₂B₂C

single crystal growth from molten copper flux, **133**, 82 synthesis and characterization, **133**, 77

 $Gd_{6+x/3}Si_{11}N_{20+x}O_{1-x}$, preparation and crystal structure, **129**, 312 $Gd_2Sn_2O_7$, structural and bonding trends, **130**, 58

GdTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277

 $(Gd-Yb)_4Mo_{18}O_{32}$, with Mo_n (n=2,4,6) cluster chains, anomalous metal–insulator transitions in, 134, 45

 $Hg_2Ba_2GdYb_2O_{8-\delta}$, synthesis and structural and magnetic characterization, 132, 163

HGdTiO₄ and HGdTiO₄·xH₂O, structure and Raman spectra, 130,

NaGdTiO₄ and Na₂Gd₂Ti₃O₁₀, structure and Raman spectra, **130**, 110 Gallium

Ga(CN)₃, disordered crystal structure, **134**, 164

 $Z_3Ga_5O_{12}$ garnets (Z = Nd,Sm,Gd,Tb), electron density study, 132, 300 GaOOH, cation arrays, 131, 358

GaPO₄ thin films, synthesis and dielectric properties, 134, 91

[Mg $_{0.174}$ Ga $_{0.256}$ (OH) $_2$](CO $_3$) $_{0.134}$ ···mH $_2$ O, synthesis, characterization, and 1 H and 71 Ga MAS NMR, 131, 78

Na₃Ga(OH)(HPO₄)(PO₄), synthesis and chain structure, 128, 21

U₃Ga₂Ge₃, nuclear and magnetic structure, neutron powder diffraction study, 131, 72

zinc blende crystals, atomic sizes in, linear electro-optic coefficient dependence on, 130, 54

Garnets

 $Al_5Ln_3O_{12}$ (Ln = Gd-Lu), cations arrays in, 128, 69

Ca₃(Cr,Al)₂Si₃O₁₂, electron density study, 132, 432

 Z_3 Ga₅O₁₂ (Z = Nd,Sm,Gd,Tb), electron density study, **132**, 300

garnet–alluaudite polymorphism in NaCa₂ M_2^{2+} (AsO₄)₃ (M^{2+} = Mg,Ni, Co), cationic substitution effects, **131**, 290

synthetic, calculation of elementary cell parameter of, empirical formula for, **134**, 338

 $Y_3X_2Al_3O_{12}$ (X = Al and (Al,Cr)), electron density study, 134, 182 Gas source molecular beam deposition

preparation of boron and boron phosphide films by, 133, 269 Geminals

chemical charge transfer in superconductivity, **129**, 174 Geometrical unit of polyhedra

UGP, stacking, in description of complex structures, 128, 52 Germanium

BaGe₂, synthesis, structure, and properties, 133, 501

 $M_{10n-2}\text{Ge}_{3n+1}\text{O}_{16n}$ with M = (Co,Mg) or (Ni,Mg), structure, 130, 9

K₅In₅Ge₅As₁₄ and K₈In₈Ge₅As₁₇, layered materials, synthesis and crystal structure, **130**, 234

 K_2ZnGeO_4 , α and β forms, crystal structures, 134, 59

La₆MgGe₂S₁₄, synthesis and structure, **131**, 399

Li₄GeO₄, superionic, vibrational spectra and energy characteristics, **134**,

Ru-Ge systems, binary compounds in, heat capacity and heat content measurements, 133, 439

U₃Ga₂Ge₃, nuclear and magnetic structure, neutron powder diffraction study, 131, 72

UGe, crystal structure and magnetic behavior, 129, 113

ZrGeSb, and ZrSi_{0.7}Sb_{1.3} and ZrSn_{0.4}Sb_{1.6}: family containing ZrSiStype and β-ZrSb₂-type compounds, **134**, 388

Gibbs energy of formation

molar, $BaMo_2O_7(s)$, using solid oxide galvanic cell method, 134, 416 Gibbs free energy

LnCuBaO₅ (Ln = Yb,Tm,Er,Ho,Dy,Gd), determination by EMF method, **134**, 85

Glass

borophosphate, electrically poled, second-harmonic generation, effects of introduction of niobium or sodium oxides, **133**, 529

fluorescent photosensitive, synthesis and characterization: material useful for optical memory and fluorescence holography, 134, 362

fluoride-containing borosilicates, OH absorption bands due to pyrohydrolysis in, removal, **130**, 330

ion-conducting, prepared by microwave melting, reversible color changes: structural implications, 131, 173

phosphate glasse with NASICON-type chemistry, synthesis using high microwave susceptibility of NaH₂PO₄·2H₂O, 132, 349

Sb₂S₃-As₂S₃-Tl₂S, ¹²¹Sb Mössbauer spectroscopy, **133**, 458

TeO₂-BaO-TiO₂, structural and nonlinear optical characterizations, 132, 411

Glycolates

precursor for preparation of BaTiO₃ thin films, **131**, 43

 ${
m Au}X_4$ ($X={
m O},{
m S},{
m Se}$), edge-sharing square planar units, transition metal compounds with, square planar to rectangular distortion in, 128, 181

Graphite

NaO_{0.44}C_{5.84} intercalation compound with sodium and peroxide, 131, 282

Groutite

hydrogen bonding and Jahn-Teller distortion in, **133**, 486 Gruneisen parameters

generalized, for elastic waves propagating in different directions in Ti, 129. 53

Н

Hafnium

Hf₈Bi₉, **134**, 26

Hf₂CoP, structure and characterization, 131, 379

Hf₂NiP, structure and characterization, 131, 379

HfW₂O₈, negative thermal expansion at high temperature, symmetric stretching vibrations of two-coordinate oxygen bridges in, letter to editor, 129, 160

Hardness

B₄C-C injection molded ceramics, Knoop's hardness, 133, 68

 $(Mo_xCr_{1-x})AlB$ and $(Mo_xW_{1-x})AlB$, Vickers microhardness, 133, 36 nanocrystalline borides and related compounds, 133, 249

tetra- and hexaborides of lanthanides and actinides, polar and reticular microhardness anisotropy, 133, 296

TiB₂ PVD coatings, microhardness, 133, 117

VB₂, microhardness of Czochralski-grown single crystals, **133**, 113 Heat capacity

binary compounds in Ru-Si, Ru-Ge, and Ru-Sn systems, 133, 439 NaMgF₃ perovskites, 132, 131

Heat content

binary compounds in Ru-Si, Ru-Ge, and Ru-Sn systems, 133, 439 Heavy fermion superconductors

chemical bonding topology, 131, 394

Hexachlorobenzene

self-propagating mechanochemical reaction with CaH₂, 129, 263

High-resolution electron microscopy

Ba₆Mn₂₄O₄₈, **132**, 239

 $Bi_{12}Sr_{18}Fe_{10}O_{52}$: collapsed structure related to 2212 structure, **129**, 214 $In_5Mo_{18}O_{28}$, **130**, 290

SbCrSe₃ 1D ferromagnet, image analysis, **132**, 257

Hole-doping effect

ferromagnetic perovskite BiMnO₃, 132, 139

Holmium

AlHoO₃, cation arrays in perovskite-type compounds, 128, 69

Al₅Ho₃O₁₂, cations arrays in garnet-type compounds, **128**, 69

Ba₂(HoSb)O₆, ordered perovskites suitable as substrates for superconducting films, characterization, **128**, 247

 $Hg_2Ba_2HoCu_2O_{8-\delta}$ synthesis and structural and magnetic characterization, 132, 163

HoB₄, polar and reticular microhardness anisotropy, 133, 296

HoB₆, incongruently melting, single crystal growth and properties, 133,

HoBa₂Cu₄O₈ superconductor, Sr substitution in, 128, 310

Ho₄C₅, crystal structure, 132, 294

HoCuBaO₅, Gibbs free energy of formation, determination by EMF method, **134**, 85

HoMnO₃, with metastable perovskite-type structure, synthesis, **129**, 334 HoOOH, cation arrays, **131**, 358

HoRh₂B₂C, synthesis and characterization, 133, 77

 $Ho_{6+x/3}Si_{11}N_{20+x}O_{1-x}$, preparation and crystal structure, 129, 312

Ho₂Sn₂O₇, structural and bonding trends, 130, 58

HoTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277

Holography

fluorescence, synthesis and characterization of fluorescent photosensitive glass useful for, **134**, 362

Hopping type transport

and Drude type transport, superposition in boron-rich solids, **133**, 335 HREM, *see* High-resolution electron microscopy

Humidity

sensing characteristics of spinel zinc stannate thin films, 128, 305 Hydrogen

 $[Al_3P_4O_{16}]^{3-} \cdot 3[CH_3CH_2NH_3]^+$, nonaqueous synthesis and characterization, **129**, 37

anhydrous ethylenediamine trimolybdate, hydrothermal synthesis and crystal structure, letter to editor, **132**, 224

 $B_{12}H_{12}$, icosahedral cluster simulating B_{12} cluster in β -rhombohedral boron, ground and excited states, 133, 178

CaH₂, self-propagating mechanochemical reaction with hexachlorobenzene, 129, 263

CaHPO₄ and CaHPO₄·2H₂O, protonic mobility in, IR spectroscopic and neutron scattering studies, 132, 6

 $(CH_3NH_3)_2M(II)(SO_4)_2 \cdot 6H_2O$ (M(II) = Cu,Zn,Ni), IR and Raman spectra, 133, 407

C₂₉H₃₀N₅O₄S₂Ru, crystal structure, **132**, 60

 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)]$, synthesis and characterization, 128, 318

Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)], two-dimensional solid with pillared layers, synthesis and structure, **132**, 144

CuCa₂(HCOO)₆, thermal decomposition, 132, 235

[Cu(II)(μ-3,5-dimethylpyrazolate)(μ-OH)], antiferromagnetic coupling, 132, 24

[Cu(II)(6-mercaptopurinolate²⁻)]_n, magnetic study, **132**, 78

Cu_xMn_{1-x}(HCOO)₂·2H₂O mixed crystals, thermal decomposition to copper-manganese oxides, **133**, 416

Cu₂(OH)₃(CH₃COO)· H₂O, preparation, characterization, and *ab initio* X-ray powder diffraction, **131**, 252

[Cu(II)(μ -pyrazolate)(μ -OH)], antiferromagnetic coupling, 132, 24

 $[Fe_3(PO_4)_3F_2,\ (CH_3NH_3)_2,\ H_2O],\ hydrothermal\ synthesis,\ crystal\ structure,\ and\ magnetic\ properties,\ 134,\ 349$

(H₃O)Yb₃F₁₀·H₂O, chimie douce synthesis and ab initio structure determination, **128**, 42

 $HLnTiO_4$ and $HLnTiO_4 \cdot xH_2O$ (Ln = La,Nd,Sm,Gd), structure and Raman spectra, 130, 110

 $H_xV_2Zr_2O_9 \cdot H_2O$ (x=0.43), hydrothermal synthesis and characterization, **128**, 313

 $H_2WO_4 \cdot nH_2O$ surfaces, transformation of ultrafine rutile particles to anatase at, letter to editor, 132, 447

hydrides of rare earth transition metal borides, low-temperature synthesis, **133**, 145

insertion into blue potassium molybdenum bronze, 128, 256

KAl(HPO₄)₂·H₂O, X-ray diffraction, neutron scattering, and solid-state NMR, 132, 47

KNa(C₄H₄O₆)·4H₂O, structure, 131, 350

 $K/V/P/N(C_2H_5)_3/H_2O$ and $NH_4/V/P/H_2O$ hydrothermal systems, analysis at 473 K, 134, 286

4-methylbenzeneamine, solid-solid reactions with CuCl₂·2H₂O, CoCl₂·6H₂O, and NiCl₂·6H₂O, **132**, 291

 α -MnOOH and γ -MnOOH, hydrogen bonding and Jahn-Teller distortion in, 133, 486

 $Mn_7Sb_4(\mu_5-O)_2(\mu_4-O)_2(\mu_3-OEt)_2(\mu-OEt)_{16}(HOEt)_2$, synthesis and structural analysis, **134**, 312

NaH₂PO₄·2H₂O, high microwave susceptibility: synthesis of crystalline and glassy phosphates with NASICON-type chemistry, **132**, 349

 $Na_3M(OH)(HPO_4)(PO_4)$ (M = Al,Ga), synthesis and chain structure, 128, 21

N(CH₃)₄·Zn(H₂PO₄)₃, molecular cluster, synthesis and crystal structure, 131, 363

N(CH₃)₄·Zn(HPO₄)(H₂PO₄), open framework phase built up from low-density 12-ring topology, synthesis and crystal structure, **131**, 363

NH₂CH=NH₂SnI₃ cubic perovskite and related systems, synthesis, resistivity, and thermal properties, **134**, 376

[NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganicorganic layers, synthesis and characterization, **132**, 229

 $(NH_4)_2[(Ti_3O_2)(HPO_4)_2(PO_4)_2]$, synthesis and X-ray powder structure, 132, 213

NH₄/V/P/H₂O and K/V/P/N(C₂H₅)₃/H₂O hydrothermal vanadium phosphate systems, analysis at 473 K, and crystal structures of NH₄VOPO₄ and (NH₄)₃V₂O₃(VO)(PO₄)₂(HPO₄), **134**, 286

[PMo $_{4.27}W_{7.73}O_{40}^{6-}$][H $_3$ N(CH $_2$) $_6$ NH $_3^{2+}$] $_3$, hydrothermal synthesis and structure, **129**, 257

RbZn₂(HPO₄)₂(H₂PO₄)· 2H₂O and RbZn(HPO₄)(H₂PO₄)· H₂O, syntheses and crystal structures, **134**, 148

Sn(O₃PCH₂CH₃) layered phase, room-temperature synthesis and structural characterization, **132**, 438

[Ti₃(PO₄)₄(H₂O)₂]·NH₃, synthesis and X-ray powder structure, 132,

 α -Zr(HPO₄)₂·H₂O large crystals, thermoanalytical study, phase transitions, and dimensional changes, 132, 17

Hydrogen bonding

in groutite and manganite, 133, 486

induced NH₄⁺ ordering in β -(NH₄)₂FeF₅ at low temperature, structural and spectroscopic evidence, **131**, 189

in KAl(HPO₄)₂·H₂O, **132**, 47

in leucophosphite, 133, 508

preferential formation of C \equiv C $-H \cdot \cdot \cdot \pi$ (C \equiv C) interactions in solid state, **134**, 203

Hydrogen sulfide

effects on chemical behavior of Sn dopant atoms on surface of $\rm Cr_2O_3$ microcrystals upon exposure to ambient atmosphere, 132, 284

Hydrolysis

pyrohydrolysis in fluoride-containing borosilicate glasses, OH absorption bands due to, removal, 130, 330

Hydrotalcite

related compounds, Mg-Fe catalysts prepared from, surface acid/base properties, microcalorimetric studies, 128, 73

related phase, existence in absence of trivalent cations, 128, 38

Hydrothermal synthesis

anhydrous ethylenediamine trimolybdate, letter to editor, 132, 224

Ba(CoPO₄)₂·H₂O, lamellar hydrated phosphate with two-dimensional array of Co-O-Co network, **131**, 387

[Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], **134**, 349

 $H_xV_2Zr_2O_9 \cdot H_2O$ (x = 0.43), **128**, 313

Na₃In₂(AsO₄)₃ and Na₃In₂(PO₄)₃, 131, 131

Na₄[(TiO)₄(SiO₄)₃]·6H₂O: rhombohedrally distorted titanosilicate pharmacosiderite, **134**, 409

 $[PMo_{4.27}W_{7.73}O_{40}^{6-}][H_3N(CH_2)_6NH_3^{2+}]_3$, 129, 257

Sn- and Ti-doped α-Fe₂O₃ prepared by, structural characterization, **130**,

Hydrothermal vanadium phosphate systems

 $NH_4/V/P/H_2O$ and $K/V/P/N(C_2H_5)_3/H_2O$, analysis at 473 K, and crystal structures of NH_4VOPO_4 and $(NH_4)_3V_2O_3(VO)(PO_4)_2(HPO_4)$, 134, 286

Hydroxide

absorption bands due to pyrohydrolysis in fluoride-containing borosilicate glasses, removal, **130**, 330

Ca(OD)₂ II prepared at high pressure, structure from powder neutron diffraction, relationship to ZrO₂ and EuI₂ structures, **132**, 267

Ca(OH)₂, incipient reaction with SiO₂ under moderate mechanical stressing, mechanisms: changes in short-range ordering, **130**, 284

 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)]$, synthesis and characterization, 128, 318

Co(II) α-hydroxide, hydrotalcite-like phase, 128, 38

Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)], two-dimensional solid with pillared layers, synthesis and structure, **132**, 144

[Cu(II)(μ -3,5-dimethylpyrazolate)(μ -OH)], antiferromagnetic coupling, 132, 24

Cu₂(OH)₃(CH₃COO)· H₂O, preparation, characterization, and *ab initio* X-ray powder diffraction, **131**, 252

[Cu(II)(μ-pyrazolate)(μ-OH)], antiferromagnetic coupling, 132, 24

 $K[Fe_2(PO_4)_2(OH)(H_2O)] \cdot H_2O$, hydrogen bonding and structural relationships, 133, 508

[Mg $_{0.174}$ Ga $_{0.256}$ (OH) $_2$](CO $_3$) $_{0.134}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ synthesis, characterization, and 1 1 $^{\prime}$ $^{\prime}$

(Mg,Ni)₂(OH)(AsO₄), structural and spectroscopic studies, **132**, 107 Na₃M(OH)(HPO₄)(PO₄) (M = Al,Ga), synthesis and chain structure, **128**, 21

[NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganicorganic layers, synthesis and characterization, **132**, 229

Ni(II) α-hydroxide, hydrotalcite-like phase, 128, 38

[Zn-Cr-SO₄] lamellar double hydroxides, selective synthesis, 130, 66

β-Zr(OH)₂(NO₃)₂·H₂O, structural analysis by X-ray powder diffraction. **128.** 295

α-Zr(OH)₂(NO₃)₂·1.65H₂O, structural analysis by X-ray powder diffraction, 128, 295

- 1

Image analysis

HREM of SbCrSe₃ 1D ferromagnet, 132, 257

Impedance spectroscopy

state of boron atoms in amorphous metallic matrix, 133, 273 Inclusion compounds

1,10-decanedicarboxylic acid/urea, temperature-dependent structural properties, **128**, 273

Incorporation model

dispersion capacity and coordination environment of Mo^{6+} on α -Fe₂O₃ surface, **129**, 30

Indium

Ba₂In₂O₅, Brownmillerite-structured, computer simulation study, **128**, 137

 An_2T_2 In (An = Pu,Am; T = Co,Ir,Ni,Pd,Pt,Rh), synthesis, crystal chemistry, and physical properties, **134**, 138

In₂Ba₂CuO_{6-δ}, layered cuprate, synthesis and characterization, **131**, 177
In₁₆Fe₈S₃₂ spinel, chemically lithiated, structural and local environment modifications, **134**, 238

 $MIn(MoO_4)_2$ and $MIn(WO_4)_2$ (M=Li,Na,K,Cs), vibrational characteristics, 129, 287

In₅Mo₁₈O₂₈, HREM studies on real structure, **130**, 290

InOOH, cation arrays, 131, 358

K₅In₅Ge₅As₁₄ and K₈In₈Ge₅As₁₇, layered materials, synthesis and crystal structure, 130, 234

 $Na_3In_2(AsO_4)_3$

alluaudite-like structure, 134, 31

hydrothermal synthesis and structures, 131, 131

Na₃In₂(PO₄)₃, hydrothermal synthesis and structures, 131, 131

NiAs-Ni₂In, related structures in Mn-Sn system, 129, 231

Sr₂CuInO₃S, crystal structure, **134**, 128

zinc blende crystals, atomic sizes in, linear electro-optic coefficient dependence on, 130, 54

 $Zn_{2-x}Sn_{1-x}In_{2x}O_{4-\delta}$ spinel, transparent conducting properties, 134,

Zr₂Ni₂In, structure and properties, 128, 289

Infrared spectroscopy, see also Fourier transform infrared spectroscopy active phonon spectra of B-C-Al compounds with boron carbide structure, 133, 254

 $Ba_{5-x}Sr_xNb_4O_{15}$ microwave dielectric ceramic resonators, 131, 2 $Ca_3(P_5O_{14})_2$, 129, 196

 $(CH_3NH_3)_2M(II)(SO_4)_2 \cdot 6H_2O (M(II) = Cu,Zn,Ni), 133, 407$

CuNbOF₅·4H₂O, **133**, 576

 $M_3 \text{Fe}_2(\text{SeO}_3)_6 \cdot 2\text{H}_2\text{O} \ (M = \text{Mg,Co,Ni}), 131, 54$

(Mg,Ni)₂(OH)(AsO₄), 132, 107

 $Na_2Cu(SO_4)_2 \cdot 2H_2O$, 133, 407

 $Ln_7O_6(BO_3)(PO_4)_2$ (Ln = La,Nd,Gd,Dy), **129**, 45

OH absorption bands due to pyrohydrolysis in fluoride-containing borosilicate glasses, removal, **130**, 330

TeO₂-BaO-TiO₂ glasses, 132, 411

Insulator-metal transition

Pr_{0.5}Ca_{0.5}MnO₃, induction by Cr and Co doping, letter to editor, 130, 162

 $Sr_{3-x}A_xFe_2O_7$ ($x \le 0.4$; A = Ba,La), 130, 129

Interband transitions

 $B_{12}P_2$ doped with Si, 133, 140

icosahedral boron-rich solids, critical points in, 133, 132

Internal friction

B₄C, B₉C, and B₁₃C₂, **133**, 44

Iodin

AgI-Ag₂O-B₂O₃-SiO₂ system, reversible color changes in ion-conducting glasses prepared by microwave melting: structural implications, 131, 173

 B_9I_9 , synthesis, crystal structure, and electronic structure, 133, 59

Cs₃Sb₂I₉, reconstructive phase transformation and kinetics by means of Rietveld analysis of X-ray diffraction and ¹²⁷I NQR, **134**, 319

EuI₂, structure, relationship to structure of Ca(OD)₂ II prepared at high pressure, powder neutron diffraction study, **132**, 267

 $\text{La}_2\text{I}Z_2$ (Z=Fe,Co,Ru,Os), $\text{Pr}_4\text{I}_5\text{Ni}$, $\text{Pr}_3\text{I}_3\text{Os}$, and Pr_2INi_2 , condensed cluster phases, 129, 277

NH₂CH=NH₂SnI₃ cubic perovskite and related systems, synthesis, resistivity, and thermal properties, **134**, 376

Rb₄YbI₆, synthesis and crystal structure, **128**, 66

Ion-conducting glasses

prepared by microwave melting, reversible color changes: structural implications, 131, 173

Ion exchange

 $Ni_{1+x}Fe_{2-2x/3}O_4$ preparation from α -NaFeO₂, 129, 123

Ionic conductivity

 $Ag_{1.92}$ Te at 160° C, **130**, 140

Ag₂VP₂O₈, 130, 28

Iridium

 $An_2\operatorname{Ir}_2X$ ($An = \operatorname{Pu,Am}$; $X = \operatorname{In,Sn}$), synthesis, crystal chemistry, and physical properties, **134**, 138

IrSi₃P₃, Raman study, 128, 142

NbS₂-IrS₂ system, 1T structure stability, 129, 242

Sr₃MgIrO₆, synthesis, crystal structure, and magnetic properties, **130**, 35 fron

Ba₆Cu₁₂Fe₁₃S₂₇, synthesis and crystal structure, **128**, 62

Ba₂FeM'F₇Cl (M' = Mn,Fe,Co,Ni), magnetic properties and neutron diffraction study, **131**, 198

BaFe₂O₄ and BaFe₁₂O₁₉ particles, synthesis with combustion method, 134, 227

 $Bi_{12}Sr_{18}Fe_{10}O_{52}$, HREM study: collapsed structure related to 2212 structure, **129**, 214

CaFe₂P₂, electronic structure and chemical bonding, first-principles study, 129, 147

 $Cd_3^{II}[(Fe^{II}/Co^{II})(CN)_6]_2 \cdot 14H_2O$, X-ray diffraction and spectral studies, 129, 17

Cu₂Fe(CN)₆, interaction with silver ions in solution, 132, 399

FeB₂₉, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335

 $FeNbO_4$, electrical resistivity, thermopower, and ^{57}Fe Mössbauer study, 134, 253

α-Fe₂O₃

aciculate ultrafine particles, kinetics of reduction to Fe_3O_4 particles, 134, 248

interaction with MoO₃, 129, 30

Sn- and Ti-doped, hydrothermally prepared, structural characterization, 130, 272

Fe₃O₄

kinetics of reduction of α -Fe₂O₃ aciculate ultrafine particles to, **134**, 248

thin film synthesis via sol-gel method, characterization, and magnetic properties, **128**, 87

[Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], hydrothermal synthesis, crystal structure, and magnetic properties, **134**, 349

 M_3 Fe₂(SeO₃)₆· 2H₂O (M = Mg,Co,Ni), synthesis, crystal structure, and IR and Mössbauer spectroscopy, **131**, 54

Fe₄W₂N, with unique η -carbide structure, synthesis, **134**, 302

 $(Fe_{0.8}W_{0.2})WN_2$, synthesis and characterization, 131, 374

 $\rm In_{16}Fe_8S_{32}$ spinel, chemically lithiated, structural and local environment modifications, 134, 238

iron zircon pigments, synthesis by pyrolysis of aerosols, 128, 102

 $K[Fe_2(PO_4)_2(OH)(H_2O)] \cdot H_2O$, hydrogen bonding and structural relationships, 133, 508

 $LaFe_xNi_{1-x}O_3$ solid solutions, crystal structure refinement and stability, 133, 379

La₂IFe₂, condensed cluster phase, 129, 277

 $La_{0.6}Sr_{0.4}Co_{1-y}Fe_yO_{3-\delta}$ (y = 0–0.6), thermodynamic quantities and defect structure, high-temperature coulometric titration studies, **130**, 302

 $La_{2-x}Sr_{2x}Cu_{1-x}Fe_xO_4$, linear Cu–O–Fe electronic interaction in two dimensions, 128, 169

 $La_{1-x}Sr_xFeO_3$, nanocrystalline material sensitivity to ethanol, effect of Sr content, 130, 152

 $\text{Li}_2\text{Fe}_2(\text{MoO}_4)_3$, weak ferromagnetic ground state structure, **130**, 147 Li_3FeN_2 , microwave synthesis, **130**, 266

Li₂O-TiO₂-Fe₂O₃ ordered spinels, cation distribution, **134**, 170

Mg-Fe catalysts prepared from hydrotalcite-like precursors, surface acid/base properties, microcalorimetric studies, **128**, 73

 $\alpha\text{-NaFeO}_2, \text{Ni}_{1+x}\text{Fe}_{2-2x/3}\text{O}_4$ obtained from, crystal and magnetic structures, **129**, 123

Na_{0.875}Fe_{0.875}Ti_{1.125}O₄, topotactic oxidation of quadruple-rutile-type chain structure, **130**, 184

 $Nd(Cr_{1-x}Fe_x)O_3$, relationship of crystal structure and electrical properties, 131, 108

β-(NH₄)₂FeF₅, hydrogen bonding-induced NH₄⁺ ordering at low temperature, structural and spectroscopic evidence, **131**, 189

Ni-6 mass% B-58.6 mass% Mo-10 mass% Fe, high-strength boride base hard materials, 133, 243

 $Ni_{1+x}Fe_{2-2x/3}O_4$ (x = 0.30), obtained by ionic exchange from α -NaFeO₂, crystal and magnetic structures, **129**, 123

PbFe_xV_{6-x}O₁₁ ($1 \le x \le 1.75$), *R*-type frustrated system, Fe substitution effects on structural, electric, and magnetic properties, **130**, 223 β -rhombohedral boron doped with

electronic properties of icosahedral solids, 133, 160

Mössbauer spectroscopy and electrical conductivity, 133, 342

 $\mathrm{Sr}_{10-n/2}\mathrm{Bi}_n\mathrm{Fe}_{20}\mathrm{O}_m$ (n=4,6,8,10), with high oxygen permeability, synthesis, 130, 316

Sr₂CuFeO₃S, crystal structure, 134, 128

Sr₃Cu₂Fe₂O₅S₂, crystal structure, **134**, 128

 $Sr_{3-x}A_xFe_2O_7$ ($x \le 0.4$; A = Ba,La), electronic state, magnetism, and electrical transport behavior, **130**, 129

tetrahedral oxo and hydroxo Fe(VI) clusters, valence stabilization, mixed crystal chemistry, and electronic transitions, 128, 1

Ti₄FeBi₂, preparation and properties, 133, 400

 $(Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}$ (0 $\leq x \leq$ 2) with Tl-2212-type structure, preparation and characterization, **132**, 308

YFe₂D_{3.5}, X-ray and neutron powder diffraction studies, **133**, 568

J

Jahn-Teller effect

contribution to negative force constants, **133**, 327 cooperative

induction of antiferrodistortive order in $CrZr_{0.75}Nb_{0.25}F_6$ solid solution, 131, 231

in Raman spectra of $Ba_2Cu_xZn_{1-x}WO_6$ mixed crystals, **129**, 117 CuNbOF₅ · 4H₂O, first- and second-order, **133**, 576

distortion in groutite and manganite, 133, 486

involving geminals and for degenerate vibronic states, 129, 174

 $LiMnXO_4(OD)$ (X = P,As) after chimie douce reactions, 132, 202

role in electrical transport in semiconducting (LaMn1-xTix)1-yO3 (x \leq 0.05), 133, 466

vibronic coupling in trirutile-type compounds, 131, 263

Κ

Kinetics

 $Cs_3Sb_2I_9$ reconstructive phase transformation: Rietveld analysis of X-ray diffraction and ^{127}I NQR, 134, 319

reduction of $\alpha\text{-Fe}_2\mathrm{O}_3$ aciculate ultrafine particles to Fe $_3\mathrm{O}_4,\,134,\,248$

L

Ladder compound

 $(Sr,Ca)_4Cu_6O_{10},$ X-ray single-crystal structure analysis, 134, 427 Lanthanum

AlLaO₃, cation arrays in perovskite-type compounds, 128, 69

BaTiO₃-LaAlO₃ and BaTiO₃-LaAlO₃-LaTi_{3/4}O₃ systems, chemical reactions and dielectric properties, **129**, 223

BiLa₂O_{4.5+ δ}, structural transformations, **131**, 64

 $Ca_{1-x}La_xS$ (x = 0–0.3), structural and luminescence properties, **131**, 101 HLaTiO₄ and HLaTiO₄ · xH_2O , structure and Raman spectra, **130**, 110 LaB₆

crystal preparation from Al flux using compound precursors, thermodynamic analysis, 133, 237

electronic structure calculations, **133**, 51

FT Raman spectroscopy, **133**, 264 in thin film technology, **133**, 279

La₁₅B₁₄C₁₉, bonding analysis, **133**, 190

LaCaAlO₄, K₂NiF₄-type aluminate single crystals, decomposition processes in, X-ray diffraction study, 134, 132

 $La_{1-x}Ca_xN_{1-x/3}$ (0 < x < 0.7), defect rock salt nitrides prepared from LaN and Ca_3N_2 , 129, 144

La_{2-x}Cd_xRu₂O_{7-δ}, pyrochlore oxides, synthesis and characterization, **129.** 308

 $LaCuO_{3-y}$ (0 $\le y \le 0.5$), copper valence and properties, control by oxygen content adjustment, **130**, 213

La₂CuO_{4+δ}, electrochemically oxidized particles prepared by sol–gel method, structural characterization, **131**, 246

La₃Cu₄P₄O₂, synthesis, crystal structure, and properties, 129, 250

La₂Cu(SeO₃)₄, synthesis and crystal structure, 133, 572

 $LaFe_xNi_{1-x}O_3$ solid solutions, crystal structure refinement and stability, 133, 379

 La_2IZ_2 (Z = Fe,Co,Ru,Os), condensed cluster phases, 129, 277

La₆MgGe₂S₁₄, synthesis and structure, 131, 399

La₆MgSi₂S₁₄, synthesis and structure, 131, 399

La_{1-x}MnO_{3+y}, orthomanganites with perovskite structure, magnetic study, **130**, 171

LaMnO_{3+ δ}

synthesis by firing gels using citric acid, 129, 60

transition from polaronic to itinerant behavior of Mn *e* electrons, **130**,

LaMn₂O₅, high-oxygen-pressure preparation, structural refinement, and thermal behavior, **129**, 105

 $(\text{LaMn}_{1-x}\text{Ti}_x)_{1-y}\text{O}_3$ ($x \le 0.05$), electrical transport in, 133, 466

La₃MoO₇, structure and electronic and thermal properties, **129**, 320

LaN, solid solutions with Ca_3N_2 , formation of defect rock salt nitrides $La_{1-x}Ca_xN_{1-x/3}$, 129, 144

LaNi₅ particles, adsorption characteristics, **134**, 67

 $La_2NiO_{4+\delta}$, metal-semiconductor transition, 131, 275

LaNi_{1-x}W_xO₃ ($0 \le x \le 0.25$) perovskites, magnetic properties, **134**, 274 lanthanum magnesium hexaaluminate, defect energetics and non-stoichiometry, **130**, 199

lanthanum molybdates with La:Mo ratio of 1:1, direct synthesis by high-energy ball milling, letter to editor, 132, 443

La₇O₆(BO₃)(PO₄)₂, X-ray powder diffraction and vibrational spectra studies, 129, 45

 La_2O_3 –Co– Co_2O_3 system, thermogravimetric study at 1100 and 1150°C, **131**, 18

LaOOH, cation arrays, 131, 358

La₅Os₃C_{4-x}, preparation and crystal structure, **131**, 49

LaPd₃S₄ bronze, crystal structure and electrical conductivity, 129, 1

LaRh₂B₂C, synthesis and characterization, 133, 77

 γ -La₂S₃, doped and undoped, band electronic structure study through LMTO-TB calculations, **128**, 197

 $\text{La}_{1-x}\text{Sm}_x\text{TiO}_3$ (0 $\leq x \leq$ 1), magnetic and structural studies, letter to editor, **133**, 583

La₂Sn₂O₇, structural and bonding trends, 130, 58

La_{0.6}Sr_{0.4}Co_{1-y}Fe_yO_{3- δ} (y=0-0.6), thermodynamic quantities and defect structure, high-temperature coulometric titration studies, **130**, 302

 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$, Coulometric titration at high temperature: electronic band structure effect on nonstoichiometry behavior, **133**, 555

La_{2-x}Sr_xCuO_{4-δ}, defect chemistry: oxygen nonstoichiometry and thermodynamic stability, **131**, 150

 $\text{La}_{2-x}\text{Sr}_{2x}\text{Cu}_{1-x}M_x\text{O}_4$ (M=Ti,Mn,Fe,Ru), linear Cu–O–M electronic interaction in two dimensions, **128**, 169

La_{1-x}Sr_xFeO₃, nanocrystalline material sensitivity to ethanol, effect of Sr content, **130**, 152

La-Sr-Mn-O system, phase equilibria, 134, 38

LaTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277

NaLaTiO₄ and Na₂La₂Ti₃O₁₀, structure and Raman spectra, **130**, 110 (Pr/La)Co(CN)₆·5H₂O, mixed cationic systems, synthesis and crystal structure, **129**, 12

 $Pr_{2-x}La_xNiO_{4+\delta}$, oxygenation and electrical properties, 131, 167 sol-gel alumina doped with, X-ray diffraction, FTIR, and NMR studies,

128, 161

 $Sr_{3-x}La_xFe_2O_7$ ($x \le 0.4$), electronic state, magnetism, and electrical transport behavior, **130**, 129

Lattice constant

synthetic oxides-garnets, empirical formula for calculation of, 134, 338 Lattice dynamics

boron-rich crystals, rotation-induced relaxation mechanism for strains, 133, 322

boron-rich solids, central and noncentral forces on, 133, 215

negative force constants and determination of force constants by electronic structure, **133**, 327

Lattice energy

BaGe₂, **133**, 501

Lattice parameters

YBa₂Cu₃O_{6+x}, orthorhombic, dependence on oxygen content, 134,

Lattice vibrations

B₄C and B₉C, 133, 44

B₁₃C₂, **133**, 44, 93

Laves phase

KAg₂, high-pressure synthesis, **130**, 311

Lead

 $Bi_{2-x}Pb_xSr_{1.5}Ca_{1.5}Mn_2O_{9-\delta}$ with 2212 structure, synthesis and crystal chemistry, 132, 420

Pb₂BiO₂PO₄, crystal structure, 133, 516

PbFe_xV_{6-x}O₁₁ ($1 \le x \le 1.75$), *R*-type frustrated system, Fe substitution effects on structural, electric, and magnetic properties, **130**, 223

(3PbO·PbSO₄·H₂O), crystal structure, 132, 173

Pb₂Ru₂O_{7-y} pyrochlores, metallic and nonmetallic properties, structural and electronic factors in, letter to editor, **131**, 405

Pb₂Sr₂Cu₂TaO₈Cl, layered cuprate with hematophanite structure, synthesis and characterization, **130**, 154

Pb_{0.26}WO₃ bronze, X-ray and electron diffraction study, 130, 176

 $Pb_2(M_{1.5}W_{0.5})O_{6.5}$ (M = Ti,Sn), defect pyrochlores, surface segregation and oxygen vacancy ordering, **130**, 81

Leucophosphite

hydrogen bonding and structural relationships, 133, 508

Linear electro-optic coefficient

zinc blende crystals, dependence on difference in atomic sizes, 130, 54 Lithium

Ba₄CuLiO₄Cl₄, Cu(III) oxy-chloride, synthesis, structure, and electrical and magnetic properties, letter to editor, **129**, 360

Li₃AlN₂, microwave synthesis, 130, 266

LiClO₄-carbonates electrolytes, electrochemical intercalation of Li ions into polyparaphenylene in, **132**, 434

LiCoO₂, boron-doped, structure and electrochemical properties, 134, 265

 $\text{LiCr}_y \text{Mn}_{2-y} \text{O}_4$ ($0 \le y \le 1$), structure modifications induced by electrochemical Li deintercalation, Rietveld analysis, **132**, 372

Li₃Cu₂SbO₆ with partially ordered rock salt structure, synthesis, 131,

Li₂Fe₂(MoO₄)₃, weak ferromagnetic ground state structure, **130**, 147 Li₃FeN₂, microwave synthesis, **130**, 266

Li₄GeO₄ and Li₄SiO₄ superionics, vibrational spectra and energy characteristics, 134, 232

LiIn(MoO₄)₂ and LiIn(WO₄)₂, vibrational characteristics, **129**, 287

LiKCO₃, crystal structure, neutron powder diffraction study, 128, 156

LiMnO₂, orthorhombic crystals, long-range and short-range magnetic order, 128, 209

LiMn₂O₄, spinel-type oxides

charge–discharge process, *in situ* XAFS study, letter to editor, **133**, 586 electric and magnetic properties, **131**, 94

and Li₂MnO₃, stoichiometry of coexisting phases, XRD and EPR studies, 128, 80

proton-exchanged, surface structure and Li⁺ sieve properties, **131**, 84 Verwey-type transition and magnetic properties, **131**, 138

X-ray absorption studies, letter to editor, 128, 326

 $\text{Li}_{1+y}\text{Mn}_{2-y}\text{O}_4$, electric and magnetic properties, 131, 94 Li_2MnO_3

electric and magnetic properties, 131, 94

and $LiMn_2O_4$, stoichiometry of coexisting phases, XRD and EPR studies, 128, 80

 $\text{Li}_4 \text{Mn}_5 \text{O}_{12}$, structure refinement with neutron and X-ray powder diffraction data, 130, 74

 $LiMnXO_4(OD)$ (X = P,As), magnetic structure, 132, 202

LiMnVO₄, ambient and high-pressure structures and Mn³⁺/Mn²⁺ redox energy, **128**, 267

Li₃Mo₃O₅(PO₄)₃, with bidimensional connection of MoO₆ octahedra, isolation and magnetic properties, **133**, 391

Li(Mo,W)₂O₃(PO₄)₂, synthesis and intersecting tunnel structure, 128, 215

Li₂Na(MoO)₂(PO₄)₃, synthesis and crystal structure, 129, 298

Li₄NCl, preparation and crystal structure, 128, 241

Li₅NCl₂, ordered and disordered phases, preparation and crystal structure, **130**, 90

Li_{0.5-3x}Nd_{0.5+x}TiO₃ perovskites, microstructural study, **128**, 97

LiNi_{0.8}Mn_{0.2}O₂, neutron diffraction study, 134, 1

Li₂O-TiO₂-Fe₂O₃ ordered spinels, cation distribution, 134, 170

Li₂Pd₃B, with boron in octahedral position, 133, 21

Li₈PrO₆, magnetic susceptibility and EPR spectra, 128, 228

Li₂Pt₃B, with boron in octahedral position, 133, 21

Li₄SiO₄ and Li₄GeO₄ superionics, vibrational spectra and energy characteristics, 134, 232

LiSn₂(PO₄)₃, low-temperature triclinic distortion in, letter to editor, **130**, 322

 $\text{Li}_3\text{Sr}_2M\text{N}_4$ (M=Nb,Ta), synthesis and structure, 130, 1

Li₈TbO₆, magnetic susceptibility and EPR spectra, 128, 228

Li₅TiN₃, microwave synthesis, **130**, 266

Li_{0.74}Ti₃O₆, intergrowth phase of rutile and ramsdellite structure, synthesis and characterization, **129**, 7

 $LiTi_2O_4$, transformation from spinel to ramsdellite upon heating, 132, 382

LiYF₄, Am³⁺ in, spectroscopic studies and crystal-field analysis, 129,

 β -rhombohedral boron doped with, electronic structure, electron energy-loss spectroscopic study, **133**, 152

LMTO band structure calculations

ThCr₂Si₂-type transition metal compounds,, 130, 254

in tight-binding representation, doped and undoped γ - Ln_2S_3 (Ln = La, Ce,Pr,Nd), **128**, 197

Local environment

chemically lithiated iron thiospinel, 134, 238

Luminescence

 $Ba_5M_4O_{15}$ ($M = Ta^{5+}, Nb^{5+}$), **134,** 187

 $Ca_{1-x}La_xS$ (x = 0-0.3), **131,** 101

 $Y_{17.33}(BO_3)_4(B_2O_5)_2O_{16}$, 134, 158

I utetium

Al₅Lu₃O₁₂, cations arrays in garnet-type compounds, 128, 69

 $Hg_2Ba_2LuYb_2O_{8-\delta}$, synthesis and structural and magnetic characterization, 132, 163

LuB₄, polar and reticular microhardness anisotropy, 133, 296

LuNi₂B₂C superconductor, comparison with nonsuperconducting SrRh₂P₂, **130**, 254

LuOOH, cation arrays, 131, 358

 $\text{Lu}_2\text{PdO}_{4-\delta}$, orthorhombic T'-type, lutetium and oxygen displacements in, letter to editor, **131**, 185

LuRh₃B₂, single crystal growth from molten copper flux, 133, 82

 $Lu_{6+x/3}Si_{11}N_{20+x}O_{1-x}$, preparation and crystal structure, 129, 312

Lu₂Sn₂O₇, structural and bonding trends, 130, 58

LuTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277

M

Magneli phases

translational disorder generated by oriented defects in, 131, 215 Magnesium

 $(Co,Mg)_{10n-2}Ge_{3n+1}O_{16n}$, structure, **130**, 9

La₆MgGe₂S₁₄, synthesis and structure, **131**, 399

La₆MgSi₂S₁₄, synthesis and structure, **131**, 399

lanthanum magnesium hexaaluminate, defect energetics and nonstoichiometry, 130, 199

Mg-Fe catalysts prepared from hydrotalcite-like precursors, surface acid/base properties, microcalorimetric studies, 128, 73

 $Mg_3Fe_2(SeO_3)_6 \cdot 2H_2O$, synthesis, crystal structure, and IR and Mössbauer spectroscopy, 131, 54

[Mg $_{0.174}$ Ga $_{0.256}$ (OH) $_2$](CO $_3$) $_{0.134}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ synthesis, characterization, and 1 H and 71 Ga MAS NMR, 131, 78

Mg₃N₂, crystal structure, 132, 56

 $MgNb_2O_6$ columbite, crystal structure refinement from neutron powder diffraction data, 134, 76

(Mg,Ni)₂(OH)(AsO₄), structural and spectroscopic studies, 132, 107

MgO–Nb₂O₅–NbO, phase diagram and formation of reduced pseudobrookite $Mg_{5-x}Nb_{4+x}O_{15-\delta}$ (1.14 $\leq x \leq$ 1.60) phases, **134**, 76

 $Mg_{3}(PO_{4})_{2},$ high-temperature and high-pressure phase, crystal structure, $129,\ 341$

Mg–Zr–O–N system, oxynitride synthesis in ZrO₂-rich part and characterization, **128**, 282

NaCaCdMg₂(AsO₄)₃, alluaudite-like structure, **131**, 298

NaCa₂Mg₂²⁺(AsO₄)₃, cationic substitution effects on garnet–alluaudite polymorphism, **131**, 290

NaMgF₃ perovskites, thermochemistry, 132, 131

 $(Ni,Mg)_{10n-2}Ge_{3n+1}O_{16n}$, structure, **130**, 9

 $\rm Sr_3MgMO_6$ (M = Pt,Ir,Rh), synthesis, crystal structure, and magnetic properties, 130, 35

Zn(Mg)_{1-x}Cu_xSb₂O₆, trirutile-type compounds, Cu²⁺ polyhedra in, geometry and electronic structure, **131**, 263

Magnesium phthalocyanine

thin films prepared by vacuum evaporation, electrical and optical characterization, 128, 27

Magnetic coupling

changes after chimie douce reactions: magnetic structures of $LiMnXO_4(OD)$ (X = P,As), 132, 202

Magnetic excitation spectrum

SmB₆-based compounds, effect of mixed-valences state, **133**, 230 Magnetic moment

BaCuB₂O₅, noncentrosymmetric pyroborate, **129**, 184

Magnetic properties

 $Ba_4CuMO_4Cl_4$ (M = Li,Na), Cu(III) oxy-chlorides, letter to editor, 129, 360

 $Ba_2MM'F_7Cl (M,M' = Mn,Fe,Co,Ni,Zn), 131, 198$

 $Bi_{0.267}Pr_{0.733}SrO_{3-\delta}$, 132, 182

 $Bi_{1-x}Sr_xMnO_3$, **132**, 139

BN, cubic powders, effect of chemically active media, 133, 292

 $\operatorname{Ca}_{1-x}\operatorname{Eu}_x\operatorname{MnO}_3$ $(0 \le x \le 1)$ perovskites, **131**, 144

 $CsMo_6O_{10}(Mo_2O_7)(PO_4)_4$, 128, 233

 $[Cu(II)(\mu-3,5-dimethylpyrazolate)(\mu-OH)]$, 132, 24

[Cu(II)(6-mercaptopurinolate²⁻)]_n, 132, 78

[Cu(II)(μ -pyrazolate)(μ -OH)], **132**, 24

```
Fe<sub>3</sub>O<sub>4</sub> thin films prepared via sol-gel method, 128, 87
  [Fe<sub>3</sub>(PO<sub>4</sub>)<sub>3</sub>F<sub>2</sub>, (CH<sub>3</sub>NH<sub>3</sub>)<sub>2</sub>, H<sub>2</sub>O], 134, 349
  La_{2-x}Cd_xRu_2O_{7-\delta} pyrochlore oxides, 129, 308
  LaMnO<sub>3+\delta</sub>, 130, 117
  LaNi_{1-x}W_xO_3 (0 \le x \le 0.25) perovskites, 134, 274
  \text{La}_{1-x}\text{Sm}_x\text{TiO}_3 (0 \leq x \leq 1), letter to editor, 133, 583
  LiMnO<sub>2</sub> orthorhombic crystals, long-range and short-range magnetic
        order, 128, 209
  LiMn<sub>2</sub>O<sub>4</sub>- and Li<sub>2</sub>MnO<sub>3</sub>-type oxides, 131, 94
  LiMn_2O_4 spinels, 131, 138
  \text{Li}_3\text{Mo}_3\text{O}_5(\text{PO}_4)_3 with bidimensional connection of \text{MoO}_6 octahedra,
        133. 391
  A_{1-x}MnO<sub>3+y</sub> (A = La,Eu) orthomanganites with perovskite structure,
        130, 171
   A_4Mo<sub>18</sub>O<sub>32</sub> (A = Ca, Y, Gd-Yb) with Mo<sub>n</sub> (n = 2,4,6) cluster chains, 134,
        45
  NaCoPO<sub>4</sub>
     polymorph with edge-sharing Co<sup>2+</sup> octahedral chains, 131, 160
     with trigonal bipyramidal Co<sup>2+</sup> and tunnel structure, 129, 328
  Na_2MSi_4O_{10} (M = Co, Ni), 131, 335
  Nd(Cr_{1-x}Ni_x)O_3, 134, 382
  PbFe<sub>x</sub>V<sub>6-x</sub>O<sub>11</sub> (1 \leq x \leq 1.75), R-type frustrated system, effects of Fe
        substitution, 130, 223
  (Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta} and (R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}
        (R = Nd,Sm,Eu), 133, 445
  Pr_{1-x}K_xMnO_3 perovskites (x = 0-0.15), 132, 98
  Sm<sub>2</sub>ReO<sub>5</sub>, 132, 196
  Sr_3MgMO_6 (M = Pt,Ir,Rh), 130, 35
  Sr_4Mn_3(B_{1-x}Mn_x)O_{10} related to cubic perovskite structure, 134, 395
  SrPrO<sub>3</sub> perovskite, 132, 337
  (Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}~(0 \le x \le 2) with Tl-2212-type structure,
        132, 308
  UGe, 129, 113
  Zr<sub>2</sub>Ni<sub>2</sub>In and Zr<sub>2</sub>Ni<sub>2</sub>Sn, 128, 289
Magnetic ribbons
  amorphous, state of boron atoms in, impedance spectroscopy and XPS
        studies, 133, 273
Magnetic structure
   LiMnXO_4(OD) (X = P,As), 132, 202
  Ni_{1+x}Fe_{2-2x/3}O_4 (x = 0.30), 129, 123
  ordered cubic Pd<sub>3</sub>Mn, 128, 109
  U<sub>3</sub>Ga<sub>2</sub>Ge<sub>3</sub>, neutron powder diffraction study, 131, 72
Magnetic susceptibility
  Ag<sub>2</sub>VP<sub>2</sub>O<sub>8</sub>, 130, 28
  BaGe<sub>2</sub>, 133, 501
  Ba_2(RSb)O_6 (R = Y,Ho) ordered perovskites suitable as substrates for
        superconducting films, 128, 247
  Cu_2(OH)_3(CH_3COO) \cdot H_2O, 131, 252
  Ln_3Cu_4P_4O_2 (Ln = La,Ce,Nd), 129, 250
  Hg_2Ba_2LnCu_2O_{8-\delta} (Ln = Nd-Gd,Dy-Lu), 132, 163
  K_2(VO)_2P_4O_{13} with tunnel structure, 132, 41
  LaCuO_{3-y} (0 \le y \le 0.5), control by oxygen content adjustment, 130,
        213
  Li<sub>8</sub>PrO<sub>6</sub> and Li<sub>8</sub>TbO<sub>6</sub>, 128, 228
  Na_xTa_3N_5 (0 \leq x \leq 1.4), 132, 394
  Na<sub>2</sub>Ti<sub>2</sub>Sb<sub>2</sub>O layered tetragonal compound, 134, 422
  NbS<sub>2</sub>-IrS<sub>2</sub> system, 129, 242
  Pu_2T_2X (T = Co, Ir, Ni, Pd, Pt, Rh; X = In, Sn), 134, 138
  Ti_4TBi_2 (T = Cr,Mn,Fe,Co,Ni), 133, 400
Magnetism
  \text{Li}_2\text{Fe}_2(\text{MoO}_4)_3, 130, 147
```

```
NiCr<sub>2</sub>S<sub>4</sub>, powder neutron diffraction study, 134, 110
  quaternary borocarbides, 133, 169
  Sr_{3-x}A_xFe_2O_7 (x \le 0.4; A = Ba,La), 130, 129
Magnetoresistance
  CMR effect in electron-doped Ca<sub>1-x</sub>Sm<sub>x</sub>MnO<sub>3</sub>, 134, 198
Manganese
  Ba_2MnM'F_7Cl (M' = Mn,Fe,Co,Ni), magnetic properties and neutron
        diffraction study, 131, 198
  Ba<sub>6</sub>Mn<sub>24</sub>O<sub>48</sub> with composite tunnel structure, synthesis and HREM
       study, 132, 239
  Bi_{2-x}Pb_xSr_{1.5}Ca_{1.5}Mn_2O_{9-\delta} with 2212 structure, synthesis and crystal
       chemistry, 132, 420
  Bi<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub>, magnetic and electrical properties, 132, 139
  Ca_{1-x}Eu_xMnO_3 (0 \leq x \leq 1) perovskites, magnetic study, 131, 144
  Ca<sub>1-x</sub>Sm<sub>x</sub>MnO<sub>3</sub>, electron-doped, CMR effect in, 134, 198
  Cu<sub>x</sub>Mn<sub>1-x</sub>(HCOO)<sub>2</sub>·2H<sub>2</sub>O mixed crystals, thermal decomposition to
       copper-manganese oxides, 133, 416
  HoMnO<sub>3</sub>, with metastable perovskite-type structure, synthesis, 129, 334
  LaMnO_{3+\delta}
     synthesis by firing gels using citric acid, 129, 60
     transition from polaronic to itinerant behavior of Mn e electrons, 130,
  (\text{LaMn}_{1-x}\text{Ti}_x)_{1-y}\text{O}_3 (x \le 0.05), electrical transport in, 133, 466
  La<sub>2-x</sub>Sr<sub>2x</sub>Cu<sub>1-x</sub>Mn<sub>x</sub>O<sub>4</sub>, linear Cu-O-Mn electronic interaction in two
        dimensions, 128, 169
  La-Sr-Mn-O system, phase equilibria, 134, 38
  \text{LiCr}_{v}\text{Mn}_{2-v}\text{O}_{4} (0 \leq y \leq 1), structure modifications induced by electro-
        chemical Li deintercalation, Rietveld analysis, 132, 372
  LiMnO<sub>2</sub>, orthorhombic crystals, long-range and short-range magnetic
       order, 128, 209
  LiMnXO_4(OD) (X = P,As), magnetic structure, 132, 202
  LiMn<sub>2</sub>O<sub>4</sub>, spinel-type oxides
    charge-discharge process, in situ XAFS study, letter to editor, 133,
    electric and magnetic properties, 131, 94
     and Li<sub>2</sub>MnO<sub>3</sub>, stoichiometry of coexisting phases, XRD and EPR
       studies, 128, 80
     proton-exchanged, surface structure and Li<sup>+</sup> sieve properties, 131, 84
     Verwey-type transition and magnetic properties, 131, 138
     X-ray absorption studies, letter to editor, 128, 326
  Li<sub>1+v</sub>Mn<sub>2-v</sub>O<sub>4</sub>, electric and magnetic properties, 131, 94
  Li<sub>2</sub>MnO<sub>3</sub>
     electric and magnetic properties, 131, 94
    and LiMn<sub>2</sub>O<sub>4</sub>, stoichiometry of coexisting phases, XRD and EPR
       studies, 128, 80
  Li<sub>4</sub>Mn<sub>5</sub>O<sub>12</sub>, structure refinement with neutron and X-ray powder dif-
       fraction data, 130, 74
  LiMnVO_4, ambient and high-pressure structures and Mn^{3+}/Mn^{2+} re-
       dox energy, 128, 267
  LiNi<sub>0.8</sub>Mn<sub>0.2</sub>O<sub>2</sub>, neutron diffraction study, 134, 1
  Mn_{1-x-y}Ag_y\Phi V_{2-2x-y}Mo_{2x+y}O_6, solid solutions, synthesis and study,
       133. 545
  MnO<sub>2</sub>, ramsdellite and pyrolusite, relationship to groutite and manga-
       nite: hydrogen bonding and Jahn-Teller distortion, 133, 486
  Ln_{0.5}A_{0.5}MnO_3 (Ln = rare earth; A = alkaline earth), charge ordering
        in, dependence on size of A-site cation, letter to editor, 129, 363
  A_{1-x}MnO<sub>3+y</sub> (A = La,Eu), orthomoganites with perovskite structure,
       magnetic study, 130, 171
  RMn_2O_5 (R = La,Pr,Nd,Sm,Eu), high-oxygen-pressure preparation,
```

structural refinement, and thermal behavior, 129, 105

groutite and manganite, hydrogen bonding and Jahn-Teller distortion

MnOOH

cation arrays, 131, 358

 $Mn_7Sb_4(\mu_5-O)_2(\mu_4-O)_2(\mu_3-OEt)_2(\mu-OEt)_{16}(HOEt)_2$, synthesis and structural analysis, **134**, 312

Mn-Sn system, NiAs-Ni₂In-related structures in, 129, 231

Nd_{0.6}(Ca_{0.4-x}Cd_x)MnO₃ perovskites, charge order–disorder transition, 134, 215

Ni-6 mass% B-58.6 mass% Mo-10 mass% Mn, high-strength boride base hard materials, 133, 243

NiMn₂ $\square_{3\delta/4}O_{4+\delta}$, nonstoichiometric spinels, wide-angle X-ray scattering study, **129**, 271

Pd₃Mn, ordered cubic type, magnetic structure, 128, 109

Pr_{0.5}Ca_{0.5}MnO₃, insulator-metal transition induced by Cr and Co doping, letter to editor, **130**, 162

 $Pr_{1-x}K_xMnO_3$ perovskites (x = 0-0.15), structure and properties, 132, 98

Sr₂Cu₂MnO₂S₂, synthesis and properties, 130, 319

 $Sr_4Mn_3(B_{1-x}Mn_x)O_{10}$, related to cubic perovskite structure, synthesis and characterization, **134**, 395

tetrahedral oxo and hydroxo Mn(V) clusters, valence stabilization, mixed crystal chemistry, and electronic transitions, 128, 1

Ti₄MnBi₂, preparation and properties, 133, 400

YMnO₃, with metastable perovskite-type structure, synthesis, **129**, 334 Manganite

hydrogen bonding and Jahn-Teller distortion in, 133, 486

Mechanical properties

injection molded B₄C-C ceramics, 133, 68

Ni–6 mass% B–58.6 mass% Mo–10 mass% X (X = V,Fe,Co,Ti,Mn, Zr,Nb,W) high-strength boride base hard materials, 133, 243

TiB₂ PVD coatings, **133**, 117

Mechanical stress

moderate, incipient reaction of Ca(OH)₂ and SiO₂ under, mechanisms: changes in short-range ordering, **130**, 284

Mechanochemical reactions

self-propagating, between hexachlorobenzene and calcium hydride, **129**, 263

Melting

in microwave oven, ion-conducting glasses prepared by, reversible color changes: structural implications, 131, 173

Mercury

 ${\rm Hg_2Ba_2} Ln{\rm Cu_2O_8}_{-\delta}$ ($Ln={\rm Nd-Gd,Dy-Lu}$), synthesis and structural and magnetic characterization, 132, 163

Hg₂Mo₅O₁₆, preparation and crystal structure, 128, 205

 $(Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}~(0 \le x \le 2)$ with TI-2212-type structure, preparation and characterization, **132**, 308

Metal-insulator transition

doped rare earth manganate perovskites crystals prepared by fused salt electrolysis, letter to editor, 130, 327

 A_4 Mo₁₈O₃₂ (A = Ca,Y,Gd–Yb) with Mo_n (n = 2,4,6) cluster chains, 134, 45 V₂O₃, acoustic emission during, 133, 430

Metal-semiconductor behavior

 A_2 Ru₂O_{7-y} (A = Bi,Pb,Tl,rare earth) pyrochlores, letter to editor, 131, 405

Metal-semiconductor transition

 $La_2NiO_{4+\delta}$, mechanism, **131**, 275

Metal-to-metal bonding

in transition metal monocarbides and mononitrides, 128, 121

Methanolothermal synthesis

 $Cs_4Te_xSe_{16-x}$ (x=1,4) and $Cs_4Te_{9.74}Se_{13.26}$ with ordered Se/Te rings and chains, 134, 364

4-Methylbenzeneamine

solid-solid reactions with CuCl₂·2H₂O, CoCl₂·6H₂O, and NiCl₂·6H₂O, **132**, 291

Microcalorimetric studies

surface acid/base properties of Mg–Fe catalysts prepared from hydrotalcite-like precursors, 128, 73 Microwave dielectic resonators

Ba_{5-x}Sr_xNb₄O₁₅ ceramics, vibrational analysis, **131**, 2

Microwave melting

ion-conducting glasses prepared by, reversible color changes: structural implications, 131, 173

Microwave susceptibility

NaH₂PO₄ · 2H₂O, 132, 349

Microwave synthesis techniques

for crystalline and glassy phosphates with NASICON-type chemistry, 132, 349

for ternary nitride materials, 130, 266

Molecular beam deposition

gas source MBD, preparation of boron and boron phosphide films by, 133, 269

Molvbdenum

anhydrous ethylenediamine trimolybdate, hydrothermal synthesis and crystal structure, letter to editor, **132**, 224

 $BaMo_2O_7(s)$, molar Gibbs energy of formation using solid oxide galvanic cell method, **134**, 416

 $Bi_{13}Mo_4VO_{34}E_{13}$, $[Bi_{12}O_{14}E_{12}]_n$ columns and lone pairs E in, 131, 236 Bi_2O_3 –MoO₃–V₂O₅ system, synthesis, crystal structure, and chemistry, 131, 236

Ca₈[Al₁₂O₂₄](MoO₄)₂, structure and high-temperature phase transitions, **129**, 130

CsMo₆O₁₀(Mo₂O₇)(PO₄)₄, synthesis, crystal structure, and magnetic properties, **128**, 233

 $CuMoO_4$, p-T phase diagram, 132, 88

Hg₂Mo₅O₁₆, preparation and crystal structure, **128**, 205

 $MIn(MoO_4)_2$ (M = Li, Na, K, Cs), vibrational characteristics, 129, 287

In₅Mo₁₈O₂₈, HREM studies on real structure, 130, 290

 $K_{0.23}(H_2O)_{0.27}MoO_{3.00}$, $K_{0.23}(H_2O)_{0.43}MoO_{3.00}$, and $K_{0.23}(H_2O)_{0.65}$ MoO_{3.00} bronzes, preparation and thermal decomposition, **132**, 330

K_{0.28}MoO₃ bronze, soft chemical modification, 128, 256

La₃MoO₇, structure and electronic and thermal properties, **129**, 320 lanthanum molybdates with La:Mo ratio of 1:1, direct synthesis by high-energy ball milling, letter to editor, **132**, 443

Li₂Fe₂(MoO₄)₃, weak ferromagnetic ground state structure, **130**, 147 Li₃Mo₃O₅(PO₄)₃, with bidimensional connection of MoO₆ octahedra, isolation and magnetic properties, **133**, 391

Li(Mo,W)₂O₃(PO₄)₂, synthesis and intersecting tunnel structure, 128, 215

Li₂Na(MoO)₂(PO₄)₃, synthesis and crystal structure, 129, 298

 $Mn_{1-x-y}Ag_y\Phi V_{2-2x-y}Mo_{2x+y}O_6$, solid solutions, synthesis and study, 133, 545

 $(Mo_xCr_{1-x})AlB$, single crystal growth by metal Al solutions and crystal properties, 133, 36

MoO₃

interaction with α -Fe₂O₃, **129**, 30

surfaces, transformation of ultrafine rutile particles to anatase at, letter to editor, **132**, 447

AMo₃O₁₂, negative thermal expansion, letter to editor, **133**, 580

 A_4 Mo₁₈O₃₂ (A = Ca,Y,Gd-Yb), with Mo_n (n = 2,4,6) cluster chains, anomalous metal-insulator transitions in, **134**, 45

 $(Mo_xW_{1-x})AlB$, single crystal growth by metal Al solutions and crystal properties, 133, 36

MoWO₃(PO₄)₂, crystal structure, 128, 191

NaMoO₂AsO₄, preparation and crystal structure, 133, 386

Na₃(MoO)₂(PO₄)₃ with intersecting tunnel structure, synthesis and crystal chemistry, **132**, 249

Ni-6 mass% B-58.6 mass% Mo-10 mass% X (X = V,Fe,Co,Ti,Mn,Zr,Nb,W) high-strength boride base hard materials, **133**, 243

 $[PMo_{4.27}W_{7.73}O_{40}^{6-}][H_3N(CH_2)_6NH_3^{2+}]_3,$ hydrothermal synthesis and structure, **129**, 257

Rb₂Mo₂WO₅(PO₄)₃, interconnected tunnel structure, 130, 48

 $TeMo_5O_{16}$, two-dimensional conductor, synthesis and crystal structure, 129, 303

Monetite

protonic mobility in, IR spectroscopic and neutron scattering studies, 132. 6

Mössbauer spectroscopy

CeRu₄Sn₆, ¹¹⁹Sn study, **134**, 326

chemical behavior of Sn dopant atoms on surface of Cr₂O₃ microcrystals. 132, 284

Fe-doped β -rhombohedral boron, 133, 342

FeNbO₄, ⁵⁷Fe study, **134**, 253

[Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], **134**, 349

 M_3 Fe₂(SeO₃)₆·2H₂O (M = Mg,Co,Ni), **131**, 54

Sb₂S₃-As₂S₃-Tl₂S glasses, ¹²¹Sb study, **133**, 458

Ν

Nanocrystals

borides and related compounds, hardness, elastic modulus, and electrical resistivity, **133**, 249

Nanopowders

 ${\rm TiO_2}$ anatase, Ru complex sensitizers of, crystal structure, 132, 60 NASICON-type chemistry

crysalline and glassy phosphates with, synthesis using high microwave susceptibility of NaH₂PO₄·2H₂O, 132, 349

Negative force constants

analysis and determination of force constants by electronic structure, 133, 327

Neodymium

AlNdO₃, cation arrays in perovskite-type compounds, 128, 69

NdB₆, polar and reticular microhardness anisotropy, 133, 296

Hg₂Ba₂NdCu₂O_{8-δ}, synthesis and structural and magnetic characterization, 132, 163

HNdTiO₄ and HNdTiO₄·xH₂O, structure and Raman spectra, 130, 110

 $Li_{0.5-3x}Nd_{0.5+x}TiO_3$ perovskites, microstructural study, 128, 97 $NaNdTiO_4$ and $Na_2Nd_2Ti_3O_{10},$ structure and Raman spectra, 130, 110

 $Nd_2Ba_4Cu_7O_{14+\delta}$, Pr-doped, high-pressure synthesis and characterization, 132, 73

Nd_{0.6}(Ca_{0.4-x}Cd_x)MnO₃ perovskites, charge order–disorder transition, 134, 215

 $(Nd_{2-0.125}Ce_{0.125}CuO_{4-0.625})_{2\times 4},$ superconductive mechanism, 129, 174

 $Nd(Cr_{1-x}Fe_x)O_3$, relationship of crystal structure and electrical properties, 131, 108

 $Nd(Cr_{1-x}Ni_x)O_3$, electrical properties, effect of spin state of Ni^{3+} ions, 134, 382

 $Nd_3Cu_4P_4O_2$, synthesis, crystal structure, and properties, **129**, 250 $Nd_3Ga_5O_{12}$ garnet, electron density study, **132**, 300

 $NdMn_2O_5$, high-oxygen-pressure preparation, structural refinement, and thermal behavior, **129**, 105

 ${\rm Nd_7O_6(BO_3)(PO_4)_2},~{\rm X-ray}$ powder diffraction and vibrational spectra studies, 129, 45

Nd₅Os₃C_{4-x}, preparation and crystal structure, **131**, 49

NdPd₃S₄ bronze, crystal structure and electrical conductivity, 129, 1

 $(Nd_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$, structural properties and oxygen stoichiometry, 133, 445

NdRh₂B₂C, synthesis and characterization, 133, 77

 γ -Nd₂S₃, doped and undoped, band electronic structure study through LMTO-TB calculations, **128**, 197

Nd₂Sn₂O₇, structural and bonding trends, 130, 58

NdTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277

zirconolite-4M substituted with, analysis and structure, 129, 346

Neutron diffraction, see Powder neutron diffraction

Neutron scattering

 $KAl(HPO_4)_2 \cdot H_2O$, 132, 47

protonic mobility in brushite and monetite, 132, 6

Nicke

Ba₂NiM'F₇Cl (M' = Mn,Fe,Co,Ni), magnetic properties and neutron diffraction study, **131**, 198

 $Ba_{88}Ni_{87}O_{156}(CO_3)_{19}$, synthesis and structure, 128, 220

 Me^+ Br·NiBr₂·6H₂O (Me^+ = K,NH₄,Rb), crystallization and structure, **129**, 200

CaNi₂P₂, electronic structure and chemical bonding, first-principles study, **129**, 147

(CH₃NH₃)₂Ni(II)(SO₄)₂·6H₂O, IR and Raman spectra, 133, 407

doping of ZnO thin films, 128, 176

Hf₂NiP, structure and characterization, 131, 379

 $LaFe_xNi_{1-x}O_3$ solid solutions, crystal structure refinement and stability, 133, 379

LaNi₅ particles, adsorption characteristics, 134, 67

La₂NiO_{4+δ}, metal–semiconductor transition, 131, 275

 $LaNi_{1-x}W_xO_3$ (0 $\leq x \leq$ 0.25) perovskites, magnetic properties, **134**, 274 $LiNi_{0.8}Mn_{0.2}O_2$, neutron diffraction study, **134**, 1

LuNi₂B₂C superconductor, comparison with nonsuperconducting SrRh₂P₂, 130, 254

(Mg,Ni)₂(OH)(AsO₄), structural and spectroscopic studies, 132, 107

NaCa₂Ni₂⁺(AsO₄)₃, cationic substitution effects on garnet–alluaudite polymorphism, **131**, 290

Na₂NiSi₄O₁₀, magnetic behavior, **131**, 335

 $Nd(Cr_{1-x}Ni_x)O_3$, electrical properties, effect of spin state of Ni^{3+} ions, 134, 382

 NiX_4 (X = O,S,Se), edge-sharing square planar units, transition metal compounds with, square planar to rectangular distortion in, 128, 181

 An_2Ni_2X (An = Pu,Am; X = In,Sn), synthesis, crystal chemistry, and physical properties, **134**, 138

NiAs-Ni₂In, related structures in Mn-Sn system, 129, 231

RNi₂B₂C systems

chemical and physical properties, 133, 169

superconducting and magnetic ordering temperatures for R = Tm or Er, effects of Pd, Pt, and Co dopants, 133, 5

Ni-6 mass% B-58.6 mass% Mo-10 mass% X (X = V, Fe, Co, Ti, Mn, Zr, Nb, W) high-strength boride base hard materials, 133, 243

NiCl₂·6H₂O, solid-solid reactions with 4-methylbenzeneamine, 132, 291

 $NiCr_2S_4$, structure and magnetism, powder neutron diffraction study, 134, 110

 $Ni_{1+x}Fe_{2-2x/3}O_4$ (x = 0.30), obtained by ionic exchange from α -NaFeO₂, crystal and magnetic structures, **129**, 123

Ni₃Fe₂(SeO₃)₆·2H₂O, synthesis, crystal structure, and IR and Mössbauer spectroscopy, **131**, 54

Ni(II) α -hydroxide, hydrotalcite-like phases, 128, 38

 $(Ni,Mg)_{10n-2}Ge_{3n+1}O_{16n}$, structure, 130, 9

NiMn₂ $\square_{3\delta/4}O_{4+\delta}$, nonstoichiometric spinels, wide-angle X-ray scattering study, **129**, 271

δ-Ni_{0.25}V₂O₅·H₂O, crystal structure, 132, 323

Pr₂INi₂ and Pr₄I₅Ni, condensed cluster phases, 129, 277

 $Pr_2NiO_{4+\delta}$, La- and Sr-substituted, oxygenation and electrical properties. **131.** 167

Ti₄NiBi₂, preparation and properties, 133, 400

Zr₂Ni₂In, structure and properties, **128**, 289

Zr₂NiP, structure and characterization, **131**, 379

Zr₂Ni₂Sn, structure and properties, 128, 289

Niobium

Ba₅Nb₄O₁₅, luminescence, 134, 187

BaNbSe₃, quasi-one-dimensional selenide, phase transitions, 132, 188

BaNb₂Se₅, superconductivity, 132, 188

 $Ba_{5-x}Sr_xNb_4O_{15}$, microwave dielectric ceramic resonators, vibrational analysis, 131, 2

Ca(PO₃)₂-CaB₄O₇-Na₂B₄O₇-Nb₂O₅, borophosphate glasses, synthesis and second-harmonic generation after poling treatment, **133**, 529

CrZr_{0.75}Nb_{0.25}F₆, antiferrodistortive order in solid solution, **131**, 231 CuNbOF₅·4H₂O, infrared spectroscopy, **133**, 576

 $Cu_x(MS)_{1+y}(NbS_2)_2$ (M = Ce,Sm), phase transition, 134, 99

FeNbO₄, electrical resistivity, thermopower, and ⁵⁷Fe Mössbauer study, **134**, 253

Li₃Sr₂NbN₄, synthesis and structure, 130, 1

MgNb₂O₆ columbite, crystal structure refinement from neutron powder diffraction data, **134**, 76

 $MgO-Nb_2O_5-NbO$, phase diagram and formation of reduced pseudobrookite $Mg_{5-x}Nb_{4+x}O_{15-\delta}$ (1.14 $\leq x \leq$ 1.60) phases, **134**, 76

NbS₂-IrS₂ system, 1T structure stability, 129, 242

Ni-6 mass% B-58.6 mass% Mo-10 mass% Nb, high-strength boride base hard materials, 133, 243

 $(R_{1.5-x} Pr_x Ce_{0.5}) Sr_2 Cu_2 NbO_{10-\delta}$ (R = Nd, Sm, Eu), structural properties and oxygen stoichiometry, **133**, 445

Rb₅VONb₁₄O₃₈, synthesis and crystal structure, **134**, 10

 $Tl_{1-x}Sr_2Cu_{1-y}Nb_{x+y}O_{5-\delta}$, 1201-based cuprate, cation ordering in, **132**, 113

Nitrogen, see also Ammonium

Ag₂Ce(H₂O)(NO₃)₅, structure and thermal decomposition, temperature-dependent X-ray powder diffraction study, **132**, 361

AlN, microwave synthesis, 130, 266

 $[Al_3P_4O_{16}]^{3-} \cdot 3[CH_3CH_2NH_3]^+$, nonaqueous synthesis and characterization, **129**, 37

anhydrous ethylenediamine trimolybdate, hydrothermal synthesis and crystal structure, letter to editor, **132**, 224

BaO-Al₂O₃-AlN system, phase relations, 129, 66

B-C-N-O system, syntheses at high pressure and temperature in electron energy-loss spectroscopy, **133**, 365 materials prepared by, **133**, 356

BN

for coatings, matrix, and Si₃N₄–BN composite ceramics, aminoboranes as source for, **133**, 164

cubic, structure and properties, effect of chemically active media, 133, 292

 B_6N_{1-x} , synthesis at high pressure and temperature, 133, 356

B₆N, synthesized at high pressure and temperature, electron energy-loss spectroscopy, **133**, 365

 Ca_3N_2 , solid solutions with LaN, formation of defect rock salt nitrides $La_{1-x}Ca_xN_{1-x/3}$, 129, 144

carbon fiber/BN matrix microcomposite, preparation, aminoboranes as BN source for, 133, 164

Ca–Zr–O–N system, oxynitride synthesis in ZrO₂-rich part and characterization, 128, 282

 $Cd_3^{II}[(Fe^{III}/Co^{III})(CN)_6]_2 \cdot 14H_2O$, X-ray diffraction and spectral studies, 129, 17

 $(CH_3NH_3)_2M(II)(SO_4)_2 \cdot 6H_2O$ (M(II) = Cu,Zn,Ni), IR and Raman spectra, 133, 407

C₂₉H₃₀N₅O₄S₂Ru, crystal structure, 132, 60

 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)]$, synthesis and characterization, 128, 318

CrN, synthesis from ammonolysis of Cr₂S₃, 134, 120

CrWN₂, chemical synthesis and crystal structure, 128, 185

[Cu(II)(μ -3,5-dimethylpyrazolate)(μ -OH)], antiferromagnetic coupling,

Cu₂Fe(CN)₆, interaction with silver ions in solution, 132, 399

[Cu(II)(6-mercaptopurinolate²⁻)]_n, magnetic study, 132, 78

[Cu(II)(μ -pyrazolate)(μ -OH)], antiferromagnetic coupling, 132, 24

[Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], hydrothermal synthesis, crystal structure, and magnetic properties, **134**, 349

 Fe_4W_2N , with unique η -carbide structure, synthesis, 134, 302

(Fe_{0.8}W_{0.2})WN₂, synthesis and characterization, 131, 374

Ga(CN)₃, disordered crystal structure, **134**, 164

 $K/V/P/N(C_2H_5)_3/H_2O$ and $NH_4/V/P/H_2O$ hydrothermal systems, analysis at 473 K, 134, 286

 $La_{1-x}Ca_xN_{1-x/3}$ (0 < x < 0.7), defect rock salt nitrides prepared from LaN and Ca_3N_2 , 129, 144

LaN, solid solutions with Ca_3N_2 , formation of defect rock salt nitrides $La_{1-x}Ca_xN_{1-x/3}$, 129, 144

Li₃AlN₂, microwave synthesis, **130**, 266

Li₃FeN₂, microwave synthesis, **130**, 266

Li₄NCl, preparation and crystal structure, **128**, 241

Li₅NCl₂, ordered and disordered phases, preparation and crystal structure, **130**, 90

 $\text{Li}_3\text{Sr}_2M\text{N}_4$ (M=Nb,Ta), synthesis and structure, 130, 1

Li₅TiN₃, microwave synthesis, **130**, 266

4-methylbenzeneamine, solid–solid reactions with $CuCl_2 \cdot 2H_2O$, $CoCl_2 \cdot 6H_2O$, and $NiCl_2 \cdot 6H_2O$, 132, 291

Mg₃N₂, crystal structure, 132, 56

Mg–Zr–O–N system, oxynitride synthesis in $\rm ZrO_2$ -rich part and characterization, 128, 282

 $Na_xTa_3N_5$ ($0 \le x \le 1.4$), synthesis and partial characterization, 132, 394 $N(CH_3)_4 \cdot Zn(H_2PO_4)_3$, molecular cluster, synthesis and crystal structure, 131, 363

N(CH₃)₄·Zn(HPO₄)(H₂PO₄), open framework phase built up from low-density 12-ring topology, synthesis and crystal structure, **131**, 363

NH₂CH=NH₂SnI₃ cubic perovskite and related systems, synthesis, resistivity, and thermal properties, **134**, 376

[NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganicorganic layers, synthesis and characterization, **132**, 229

NH₄/V/P/H₂O and K/V/P/N(C₂H₅)₃/H₂O hydrothermal vanadium phosphate systems, analysis at 473 K, and crystal structures of NH₄VOPO₄ and (NH₄)₃V₂O₃(VO)(PO₄)₂(HPO₄), **134**, 286

 $[PMo_{4.27}W_{7.73}O_{40}^{6-}][H_3N(CH_2)_6NH_3^{2+}]_3,$ hydrothermal synthesis and structure, **129**, 257

 $(Pr/La)Co(CN)_6 \cdot 5H_2O$, mixed cationic systems, synthesis and crystal structure, **129**, 12

Si₃N₄-BN composite ceramic, preparation, aminoboranes as BN source for, **133**, 164

 $R_{6+x/3} Si_{11} N_{20+x} O_{1-x}$ (R=Y and Gd–Lu), preparation and crystal structures, **129**, 312

TiN

microwave synthesis, 130, 266

nanocrystalline materials, hardness, elastic modulus, and electrical resistivity, **133**, 249

synthesis from ammonolysis of TiS2, 134, 120

TiN/TiB₂ nanocrystalline materials, hardness, elastic modulus, and electrical resistivity, **133**, 249

[Ti₃(PO₄)₄(H₂O)₂]·NH₃, synthesis and X-ray powder structure, 132, 213

VN

metal-to-metal bonding in, 128, 121

microwave synthesis, 130, 266

synthesis from ammonolysis of VS₂, **134**, 120

Zn(CN)₂, disordered crystal structure, 134, 164

 $\beta\text{-}Zr(OH)_2(NO_3)_2\cdot H_2O,$ structural analysis by X-ray powder diffraction, **128**, 295

α-Zr(OH)₂(NO₃)₂·1.65H₂O, structural analysis by X-ray powder diffraction, 128, 295

Nonlinear optical materials

2-amino-5-nitropyridinium chloride, crystal growth, 129, 22

NOR spectroscopy

¹²⁷I, in kinetic study of Cs₃Sb₂I₉ reconstructive phase transformation, **134**, 319

Nuclear magnetic resonance

 $KAl(HPO_4)_2 \cdot H_2O$, 132, 47

 $[Mg_{0.174}Ga_{0.256}(OH)_2](CO_3)_{0.134} \cdot mH_2O$, 131, 78

NaO_{0.44}C_{5.84} graphite intercalation compound with sodium and peroxide, **131**, 282

sol-gel alumina doped with La and Ce, 128, 161

Nuclear structure

U₃Ga₂Ge₃, neutron powder diffraction study, **131**, 72

0

Obituary

Hans Nowotny, 133, 1

Octaheral unit of antiprisms

diamond-type stacking, (H₃O)Yb₃F₁₀·H₂O prepared by chimie douce synthesis, **128**, 42

stackings of UGP in description of complex structures, 128, 52

Open-framework phosphates

[Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], hydrothermal synthesis, crystal structure, and magnetic properties, **134**, 349

Optical memory

fluorescent photosensitive glass useful for, synthesis and characterization, 134, 362

Optical properties

magnesium phthalocyanine thin films prepared by vacuum evaporation, 128, 27

Na₃Eu(CO₃)₃, 132, 33

 $Zn_{2-x}Sn_{1-x}In_{2x}O_{4-\delta}$ spinel, **134**, 192

Optical spectrum

 β -rhombohedral boron, complete spectrum, 133, 129

Ordering

anionic vacancies in BaCoO_{2.94} hexagonal related perovskites, **128**, 130 antiferromagnetic, *see* Antiferromagnetic ordering

in fcc-based alloys, similarity to cation ordering in [(Tl,M)O] layers of 1201-based cuprate, 132, 113

hydrogen bonding-induced NH₄⁺ ordering in β -(NH₄)₂FeF₅ at low temperature, structural and spectroscopic evidence, **131**, 189

or disordering, in $A(B'B'')O_3$ perovskite compounds, simple method for judging, 134, 420

short-range, mechanically induced precursor in amorphous state between $Ca(OH)_2$ and SiO_2 , 130, 284

vacancy, see Vacancy ordering

Osmium

CeOs₃B₂, heavy fermion superconductors, chemical bonding topology, 131, 394

La₂IOs₂ and Pr₃I₃Os, condensed cluster phases, 129, 277

 $Ln_5 Os_3 C_{4-x}$ (Ln = La - Nd, Sm), preparation and crystal structure, 131, 49

 $(Mo_xCr_{1-x})AlB$ and $(Mo_xW_{1-x})AlB$ resistance to, 133, 36

topotactic, quadruple-rutile-type chain structure $Na_{0.875}Fe_{0.875}Ti_{1.125}$ O_4 , 130, 184

ultrafine copper powder resistance to, improvement by phosphating treatment, **130**, 157

Oxide conductors

Bi–Ln–V–O anionic conductors with δ-Bi₂O₃ fluorite-type structure (Ln = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), **134**, 219

Oxides-garnets

synthetic, calculation of elementary cell parameter of, empirical formula for, **134**, 338

Oxoethoxide

 $Mn_7Sb_4(\mu_5-O)_2(\mu_4-O)_2(\mu_3-OEt)_2(\mu-OEt)_{16}(HOEt)_2$, synthesis and structural analysis, **134**, 312

Oxygen

Ca-Zr-O-N and Mg-Zr-O-N systems, oxynitride synthesis in ZrO₂-rich part and characterization, 128, 282

Co-free oxides with high permeability to, synthesis, 130, 316

content in orthorhombic YBa₂Cu₃O_{6+x}, dependence of lattice parameters on, **134**, 356

displacement in orthorhombic T'-type $\operatorname{Lu_2PdO_{4-\delta}}$, letter to editor, 131, 185

introduction in $YBa_2Cu_3O_y$ single crystal, effects on structure and electron density, 130, 42

in LaCuO_{3-y} ($0 \le y \le 0.5$), content adjustment, effect on copper valence and properties, **130**, 213

 α -MnOOH and γ -MnOOH, hydrogen bonding and Jahn–Teller distortion in, 133, 486

nonstoichiometry in La_{2-x}Sr_xCuO_{4-δ}, 131, 150

pressure, effect on ${\rm La_2NiO_{4+\delta}}$ excess oxygen concentration and electrical conductivity, 131, 275

stoichiometry in $(Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta}$ and $(R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$ (R=Nd,Sm,Eu), 133, 445

two-coordinate bridges, symmetric stretching vibrations in negative thermal expansion of $ZrV_xP_{2-x}O_7$ and AW_2O_8 (A=Zr,Hf) at high temperature, letter to editor, 129, 160

vacancy ordering in $Pb_2(M_{1.5}W_{0.5})O_{6.5}$ (M = Ti,Sn) defect pyrochlores, 130, 81

Oxygenation

 $Pr_{2-x}M_xO_{4+\delta}$ (M = La,Sr), 131, 167

Oxyhydroxides

trivalent metal, cation array of, 131, 358

Oxynitrides

synthesis in ZrO₂-rich part of Ca-Zr-O-N and Mg-Zr-O-N systems and characterization, **128**, 282

Р

Palladium

Al-Pd-Re quasicrystals

modulated photocurrent measurements, 133, 224

photocurrent observations, 133, 302

 $Al_{92-x}Pd_xRe_8$ -type quasicrystals, electronic properties, **133**, 160

Ba₁₁Pd₁₁O₂₀(CO₃)₂, synthesis and structure, **128**, 220

effect on superconducting and magnetic ordering temperatures in RNi_2B_2C (R = Tm,Er), 133, 5

Li₂Pd₃B, with boron in octahedral position, 133, 21

 $\text{Lu}_2\text{PdO}_{4-\delta}$, orthorhombic T'-type, lutetium and oxygen displacements in, letter to editor, **131**, 185

 $(ND_4)_2PdCl_6$, antifluorite, phase analysis, 131, 221

 ${
m Pd}X_4$ (X = O,S,Se), edge-sharing square planar units, transition metal compounds with, square planar to rectangular distortion in, 128, 181

 $An_2\text{Pd}_2X$ (An = Pu, Am; X = In, Sn), synthesis, crystal chemistry, and physical properties, **134**, 138

Pd/CeO₂/SiO₂ systems, spreading and phase transformations in, 131, 121

Pd₃Mn, ordered cubic type, magnetic structure, **128**, 109

 MPd_3S_4 bronzes (M = La, Nd, Eu), crystal structure and electrical conductivity, 129, 1

Y-Pd-B-C system, chemical and physical properties, 133, 169

Parallel electron energy-loss spectroscopy

Be-B-bearing materials, 133, 347

Permeability

to oxygen, Co-free oxides with, synthesis, 130, 316

Perovskites

 $AlLnO_3$ (Ln = La, Ce, Pr, Nd, Sm, Ho), cation arrays in, 128, 69

BaCoO_{2.94}, hexagonal related, ordering of anionic vacancies in, **128**, 130

 $Ba_2(RSb)O_6$ (R = Y,Ho), suitable as substrates for superconducting films, characterization, **128**, 247

 $Ba_{2-x}Sr_xDyTaO_6$ (x = 0,1,2), development and dielectric properties, 133, 522

(Ba,Sr)_{1+y}UO_{3+x}, structure and thermodynamics, 131, 341

BaTl_{0.5}Sb_{0.5}O₃, structural analysis, letter to editor, **128**, 323

 $Ba_{1+y}UO_{3+x}$, structure and thermodynamics, 131, 341

BiMnO₃, ferromagnetic, effect of hole-doping, **132**, 139

 $Ca_{1-x}Eu_xMnO_3$ (0 $\leq x \leq$ 1), magnetic study, **131**, 144

doped rare earth manganate crystals, synthesis using fused salt electrolysis, letter to editor, 130, 327

HoMnO₃ and YMnO₃, with metastable structures, synthesis, **129**, 334 LaFe_xNi_{1-x}O₃, crystal structure refinement and stability, **133**, 379 LaNi_{1-x}W_xO₃ ($0 \le x \le 0.25$), magnetic properties, **134**, 274

 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$, Coulometric titration at high temperature: electronic band structure effect on nonstoichiometry behavior, **133**, 555

Li_{0.5-3x}Nd_{0.5+x}TiO₃, microstructural study, 128, 97

 A_{1-x} MnO_{3+y} (A = La,Eu) orthomanganites, magnetic study, **130**, 171 NaMgF₃, thermochemistry, **132**, 131

 $Nd_{0.6}(Ca_{0.4-x}Cd_x)MnO_3$, charge order–disorder transition, **134**, 215 $Nd(Cr_{1-x}Ni_x)O_3$, orthorhombic, electrical properties, effect of spin state of Ni^{3+} ions, **134**, 382

NH₂CH=NH₂SnI₃ cubic perovskite and related systems, synthesis, resistivity, and thermal properties, **134**, 376

 $A(B'B'')O_3$ compounds, simple method for judging ordering or disordering in, 134, 420

 $Pr_{1-x}K_xMnO_3$ (x=0–0.15), structure and properties, **132**, 98 related 10-layer oxyhalide $Ba_5Ru_{1.6}W_{0.4}Cl_2O_9$, crystal structure, **132**, 407 $SrPrO_3$, structure and magnetic properties, **132**, 337

structure, closely related $Sr_4Mn_3(B_{1-x}Mn_x)O_{10}$, synthesis, 134, 395 Peroxide

and sodium, intercalation into graphite, 131, 282

Pharmacosiderite

rhombohedrally distorted, $Na_4[(TiO)_4(SiO_4)_3] \cdot 6H_2O$, synthesis and crystal structure, 134, 409

Phase diagram

BaO-Al₂O₃-AlN system, **129**, 66

La₂O₃-Co-Co₂O₃ system at 1100 and 1150°C, **131**, 18

La-Sr-Mn-O system, 134, 38

 $MgO-Nb_2O_5-NbO$, 134, 76

MnV₂O₆-AgVMoO₆-MoO₃ system, 133, 545

 NbS_2 -IrS₂ system, **129**, 242

orientationally disordered crystals of 2-amino-2-methyl-1,3-propanediol and 1,1,1-tris(hydroxymethyl)propane, **133**, 536

perovskite A(B'B'')O₃ compounds: simple method for judging ordering or disordering, **134**, 420

p-T phase diagram of CuMoO₄, 132, 88

Ti-B-C system including sections TiC_y-TiB_2 and $B_4C_y-TiB_2$, 133, 205 Phase relations

SrO-CaO-CuO system under high pressure, 132, 274

 $Zn_{2-x}Sn_{1-x}In_{2x}O_{4-\delta}$ spinel, **134**, 192

Phase transformations

BiLa₂O_{4.5+ δ}, **131**, 64

in highly dispersed CeO_2/SiO_2 and $Pd/CeO_2/SiO_2$ systems, 131, 121 ABO_4 structures, 129, 82

reconstructive, $Cs_3Sb_2I_9$: Rietveld analysis of X-ray diffraction and ^{127}I NQR, 134, 319

in sol-gel aluminum titanate at high temperature, FTIR study, 131, 181 Phase transitions

BaNbSe₃ quasi-one-dimensional selenide, 132, 188

Ba₃(VO₄)₂ at high pressure, 132, 156

 $Ca_8[Al_{12}O_{24}](MoO_4)_2$ at high temperature, 129, 130

in Cu-intercalated misfit-layer compounds, 134, 99

1,10-decanedicarboxylic acid/urea inclusion compound, 128, 273

garnet–alluaudite polymorphism in $NaCa_2M_2^{2+}(AsO_4)_3$ ($M^{2+}=Mg$, Ni,Co), cationic substitution effects, **131**, 290

LiTi₂O₄ spinel to ramsdellite upon heating, 132, 382

metal-insulator, in V₂O₃, acoustic emission during, 133, 430

NaMgF₃ perovskites, 132, 131

Na₂Ti₂Sb₂O layered tetragonal compound, 134, 422

(ND₄)₂PdCl₆ antifluorite, 131, 221

rutile to anatase by transformation of ultrafine particles at negatively charged colloid surfaces, letter to editor, 132, 447

 $Sr_3(VO_4)_2$ at high pressure, 132, 156

Verwey-type, LiMn₂O₄ spinels, **131**, 138

 $Zn(Mg)_{1-x}Cu_xSb_2O_6$ trirutile-type compounds, 131, 263

 α -Zr(HPO₄)₂·H₂O large crystals, 132, 17

Phonons

intraicosahedral, interaction with optically excited carriers, 133, 125 Phonon spectra

B-C-Al compounds with boron carbide structure, 133, 254

B₆O, 133, 260

B₁₂P₂ doped with Si, 133, 140

metal hexaborides, 133, 264

Phosphate glasses

with NASICON-type chemistry, synthesis using high microwave susceptibility of NaH₂PO₄·2H₂O, 132, 349

Phosphating treatment

effect on oxidation resistance of ultrafine copper powder, 130, 157 Phosphorus

Ag₂VP₂O₈, structure and ionic conductivity, 130, 28

 $[Al_3P_4O_{16}]^{3-} \cdot 3[CH_3CH_2NH_3]^+$, nonaqueous synthesis and characterization, **129**, 37

Ba(CoPO₄)₂·H₂O, lamellar hydrated phosphate with two-dimensional array of Co-O-Co network, **131**, 387

BP

CVD wafers, thermoelectric properties, 133, 314

films obtained by gas source molecular beam deposition, preparation and electrical properties, **133**, 269

 $B_{12}P_2$

epitaxial growth of rhombohedral single crystalline films by chemical vapor deposition, **133**, 104

Si-doped, interband transitions and phonon spectra, 133, 140

CaFe₂P₂ and CaNi₂P₂, electronic structure and chemical bonding, first-principles study, 129, 147

CaHPO₄ and CaHPO₄ · 2H₂O, protonic mobility in, IR spectroscopic and neutron scattering studies, 132, 6

Ca₃(P₅O₁₄)₂, characterization, **129**, 196

 $Ca(PO_3)_2$ – CaB_4O_7 – $Na_2B_4O_7$ – Nb_2O_5 , borophosphate glasses, synthesis and second-harmonic generation after poling treatment, **133**, 529

 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)],$ synthesis and characterization, 128, 318

CsMo₆O₁₀(Mo₂O₇)(PO₄)₄, synthesis, crystal structure, and magnetic properties, **128**, 233

Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)], two-dimensional solid with pillared layers, synthesis and structure, **132**, 144

 $Ln_3Cu_4P_4O_2$ (Ln=La,Ce,Nd), synthesis, crystal structure, and properties, 129, 250

[Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], hydrothermal synthesis, crystal

structure, and magnetic properties, 134, 349 GaP, zinc blende crystals, linear electro-optic coefficient, 130, 54

GaPO₄ thin films, synthesis and dielectric properties, 134, 91

InP, zinc blende crystals, linear electro-optic coefficient, 130, 54

IrSi₃P₃, Raman study, 128, 142

KAl(HPO₄)₂·H₂O, X-ray diffraction, neutron scattering, and solid-state NMR, **132**, 47

 $K[Fe_2(PO_4)_2(OH)(H_2O)] \cdot H_2O$, hydrogen bonding and structural relationships, 133, 508

 $K_2(VO)_2P_4O_{13}$, with tunnel structure, synthesis and properties, 132,

 $LiMnPO_4(OD)$ (X = P,As), magnetic structure, 132, 202

Li₃Mo₃O₅(PO₄)₃, with bidimensional connection of MoO₆ octahedra, isolation and magnetic properties, **133**, 391

Li(Mo,W)₂O₃(PO₄)₂, synthesis and intersecting tunnel structure, 128, 215

Li₂Na(MoO)₂(PO₄)₃, synthesis and crystal structure, 129, 298

 $LiSn_2(PO_4)_3$, low-temperature triclinic distortion in, letter to editor, 130, 322

 $Mg_3(PO_4)_2$, high-temperature and high-pressure phase, crystal structure, 129, 341

MoWO₃(PO₄)₂, crystal structure, **128**, 191

NaCoPO₄

polymorph with edge-sharing Co²⁺ octahedral chains, synthesis and characterization, 131, 160

with trigonal bipyramidal Co²⁺ and tunnel structure, **129**, 328

NaH₂PO₄· 2H₂O, high microwave susceptibility: synthesis of crystalline and glassy phosphates with NASICON-type chemistry, **132**, 349

Na₃In₂(PO₄)₃, hydrothermal synthesis and structure, 131, 131

Na₃(MoO)₂(PO₄)₃ with intersecting tunnel structure, synthesis and crystal chemistry, **132**, 249

 $Na_3M(OH)(HPO_4)(PO_4)$ (M = Al,Ga), synthesis and chain structure, 128, 21

50Na₂O-49P₂O₅-0.5Eu₂O₃-0.5CeO₂: fluorescent photosensitive glass for optical memory and fluorescence holography, **134**, 362

N(CH₃)₄·Zn(H₂PO₄)₃, molecular cluster, synthesis and crystal structure, 131, 363

N(CH₃)₄· Zn(HPO₄)(H₂PO₄), open framework phase built up from low-density 12-ring topology, synthesis and crystal structure, **131**, 363

[NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganicorganic layers, synthesis and characterization, **132**, 229

 $[NH_4]^+[(Sn_3O)_2(PO_4)_3]^-$, synthesis and structure, **134**, 207

 $(NH_4)_2[(Ti_3O_2)(HPO_4)_2(PO_4)_2]$, synthesis and X-ray powder structure, 132, 213

 NH_4VOPO_4 and $(NH_4)_3V_2O_3(VO)(PO_4)_2(HPO_4)$, crystal structure, and analysis of hydrothermal vanadium phosphate systems at 473 K, 134, 286

 $Ln_7O_6(BO_3)(PO_4)_2$ (Ln = La,Nd,Gd,Dy), X-ray powder diffraction and vibrational spectra studies, **129**, 45

 $M_2M'P$ (M = Zr,Hf; M' = Co,Ni), structure and properties and relations to ZrNi and HfNi, 131, 379

Pb₂BiO₂PO₄, crystal structure, 133, 516

[PMo $_{4.27}W_{7.73}O_{40}^{6-}$][H $_3$ N(CH $_2$) $_6$ NH $_3^{2+}$] $_3$, hydrothermal synthesis and structure, **129**, 257

 $A_2MP_2O_{12}$, negative thermal expansion, letter to editor, 133, 580

 $PtSi_2P_2$, synthesis and crystal structure, 133, 473

PtSi₃P₂, synthesis, crystal structure, and electrical resistivity, **133**, 473 Rb₂Mo₂WO₅(PO₄)₃, interconnected tunnel structure, **130**, 48

 $RbZn_2(HPO_4)_2(H_2PO_4) \cdot 2H_2O$ and $RbZn(HPO_4)(H_2PO_4) \cdot H_2O$, syntheses and crystal structures, **134**, 148

RhSi₃P₃, Raman study, 128, 142

Sn(O₃PCH₂CH₃) layered phase, room-temperature synthesis and structural characterization, **132**, 438

Sn₂P₂S₆, synthesis at room temperature, **129**, 157

SrRh₂P₂, electronic structure, substitution effects, and comparison with superconducting LuNi₂B₂C, **130**, 254

[Ti₂O(PO₄)₂(H₂O)₂], synthesis and X-ray powder structure, **132**, 213

 $[Ti_3(PO_4)_4(H_2O)_2] \cdot NH_3$, synthesis and X-ray powder structure, 132,

 $UXPO_4 \cdot 2H_2O$ (X = Cl,Br), structure determination from powder X-ray diffraction data, 132, 315

W₅As_{2.5}P_{1.5} with one-dimensional vertex-linked W₆ cluster, 131, 310

α-Zr(HPO₄)₂·H₂O large crystals, thermoanalytical study, phase transitions, and dimensional changes, **132**, 17

 $\text{ZrV}_x\text{P}_{2-x}\text{O}_7$, negative thermal expansion at high temperature, symmetric stretching vibrations of two-coordinate oxygen bridges in, letter to editor, **129**, 160

Photocurrent

amorphous and β -rhombohedral boron, transient studies, **133**, 201 icosahedral cluster solids

Al-Pd-Re quasicrystals, 133, 302

modulated photocurrent measurements, 133, 224

β-rhombohedral boron, analysis of transient photoconduction under conditions allowing carrier injection from electrode, **133**, 97

YB₆₆, modulated photoconductivity measurement, **133**, 195

Photosensitive glass

fluorescent, synthesis and characterization: material useful for optical memory and fluorescence holography, 134, 362

Physical vapor deposition

boride thin film coatings, 133, 279

TiB₂ coatings loaded by, structure and properties, 133, 117

Piezoresistance

boron thin films, 133, 100

Pigments

iron zircon, synthesis by pyrolysis of aerosols, 128, 102

Platinum

effect on superconducting and magnetic ordering temperatures in RNi_2B_2C (R = Tm,Er), 133, 5

Li₂Pt₃B, with boron in octahedral position, 133, 21

 PtX_4 (X = O,S,Se), edge-sharing square planar units, transition metal compounds with, square planar to rectangular distortion in, 128, 181

 An_2 Pt₂X (An =Pu,Am; X =In,Sn), synthesis, crystal chemistry, and physical properties, **134**, 138

PtSi₂P₂, synthesis and crystal structure, **133**, 473

PtSi₃P₂, synthesis, crystal structure, and electrical resistivity, 133, 473 Sr₃MgPtO₆, synthesis, crystal structure, and magnetic properties, 130,

Sr₃MgPtO₆, synthesis, crystal structure, and magnetic properties, 130, 35

 UPt_3 , heavy fermion superconductors, chemical bonding topology, 131, 394

U₂PtC₂, heavy fermion superconductors, chemical bonding topology, 131, 394

Plutonium

 Pu_2T_2X (T = Co,Ir,Ni,Pd,Pt,Rh; X = In,Sn), synthesis, crystal chemistry, and physical properties, 134, 138

Pnictidohalide

Cd₈As₇Cl, with new structure type, **134**, 282

Point defects

in $Sb_2Te_{3-x}Se_x$ crystals, **129**, 92

Polyparaphenylene

electrochemical intercalation of Li ions in LiClO₄-carbonates electrolytes, 132, 434

Polyselenides

 $Cs_4Te_xSe_{16-x}$ (x=1,4) and $Cs_4Te_{9.74}Se_{13.26}$, with ordered Se/Te rings and chains, methanolothermal design and structure, **134**, 364

Potassium

Cs₂KEuCl₆, crystal structure by powder x-ray diffraction, 132, 1

Cs₂KTbCl₆, crystal structure by powder x-ray diffraction, 132, 1

K⁺, electrochemical doping of oxide ceramics with K-β"-Al₂O₃ ionic conductors, 128, 93

KAg₂, Laves phase, high-pressure synthesis, 130, 311

KAl(HPO₄)₂·H₂O, X-ray diffraction, neutron scattering, and solid-state NMR, 132, 47

KB₆, electronic structure calculations, 133, 51

KBr· Me^{2+} Br₂·6H₂O (Me^{2+} = Co,Ni), crystallization and structure,

KCu_{7-x}S₄, electrical resistivity anomalies and superlattice modulations, role of vacancy ordering, 134, 5 K[Fe₂(PO₄)₂(OH)(H₂O)]·H₂O, hydrogen bonding and structural relationships, 133, 508 $K_{0.23}(H_2O)_{0.27}MoO_{3.00},\ K_{0.23}(H_2O)_{0.43}MoO_{3.00},\ and\ K_{0.23}(H_2O)_{0.65}$ MoO_{3,00} bronzes, preparation and thermal decomposition, 132, K₅In₅Ge₅As₁₄ and K₈In₈Ge₅As₁₇, layered materials, synthesis and crystal structure, 130, 234 KIn(MoO₄)₂ and KIn(WO₄)₂, vibrational characteristics, 129, 287 K_{0.28}MoO₃ bronze, soft chemical modification, **128**, 256 KNa(C₄H₄O₆)·4H₂O, structure, 131, 350 K₂U₄O₁₂ and K₂U₄O₁₃, EMF and calorimetric measurements of thermodynamic properties, 132, 342 $K_2(VO)_2P_4O_{13}$, with tunnel structure, synthesis and properties, 132, 41 K/V/P/N(C₂H₅)₃/H₂O hydrothermal system, analysis at 473 K, 134, 286 K_2ZnGeO_4 , α and β forms, crystal structures, 134, 59 LiKCO₃, crystal structure, neutron powder diffraction study, 128, 156 $Pr_{1-x}K_xMnO_3$ perovskites (x = 0-0.15), structure and properties, 132, 98 Powder neutron diffraction $Ba_2MM'F_7Cl (M,M' = Mn,Fe,Co,Ni,Zn), 131, 198$ $Bi_{0.267}Pr_{0.733}SrO_{3-\delta}$, 132, 182 Ca(OD)₂ II prepared at high pressure, 132, 267 CsTiSi₂O_{6.5}, **130**, 97 KAl(HPO₄)₂·H₂O, 132, 47 LiKCO₃, **128**, 156 Li₄Mn₅O₁₂, structure refinement, **130**, 74 LiNi_{0.8}Mn_{0.2}O₂, **134**, 1 MgNb₂O₆ columbite, crystal structure refinement, 134, 76 NiCr₂S₄, structure and magnetism, 134, 110 (3PbO·PbSO₄·H₂O), 132, 173 U₃Ga₂Ge₃, 131, 72 YCoO₃, 130, 192 YFe₂D_{3.5}, **133**, 568 Powder X-ray diffraction Ag₂Ce(H₂O)(NO₃)₅, temperature-dependent study of structure and thermal decomposition, 132, 361 Ba₂Cu₃Cl₂O₄, **124**, 319; comment, **130**, 161 $Ca_8[Al_{12}O_{24}](MoO_4)_2$, **129**, 130 Ca₃(P₅O₁₄)₂, **129**, 196 $Cd_3^{II}[(Fe^{III}/Co^{III})(CN)_6]_2 \cdot 14H_2O, 129, 17$ cristobalite-related phases in NaAlO₂-NaAlSiO₄ system, 131, 24 Cs₂KEuCl₆, 132, 1 Cs₂KTbCl₆, 132, 1 Cs₃Sb₂I₉: reconstructive phase transformation and kinetics, 134, 319 Cu₂(OH)₃(CH₃COO)·H₂O, ab initio study, 131, 252 $(Fe_{0.8}W_{0.2})WN_2$, 131, 374 Li₄Mn₅O₁₂, structure refinement, **130**, 74 $(NH_4)_2[(Ti_3O_2)(HPO_4)_2(PO_4)_2], 132, 213$ $Ln_7O_6(BO_3)(PO_4)_2$ (Ln = La,Nd,Gd,Dy), 129, 45 Pb_{0.26}WO₃, **130**, 176 RS-camphor: low-temperature crystal structure, 134, 211 sol-gel alumina doped with La and Ce, 128, 161 $[Ti_2O(PO_4)_2(H_2O)_2]$, **132**, 213

 $[Ti_3(PO_4)_4(H_2O)_2] \cdot NH_3$, 132, 213

 β -Zr(OH)₂(NO₃)₂·H₂O, **128,** 295

YB₂₅, 133, 122

Power transducers

 $UXPO_4 \cdot 2H_2O (X = Cl,Br), 132, 315$

 α -Zr(OH)₂(NO₃)₂ · 1.65H₂O, **128**, 295

fluoridated PZT ceramics for, 130, 103

Praseodymium AlPrO₃, cation arrays in perovskite-type compounds, 128, 69 Bi_{0.267}Pr_{0.733}SrO_{3-δ}, crystal structure and magnetic properties, neutron diffraction studies, 132, 182 Li₈PrO₆, magnetic susceptibility and EPR spectra, 128, 228 Pr⁴⁺, doped in Sr₂SnO₄ and Ba₂SnO₄, EPR spectra, 130, 250 PrB₆, polar and reticular microhardness anisotropy, 133, 296 $(R_{1-x}, Pr_x)Ba_4Cu_7O_{14+\delta}$ (R = Nd, Eu, Tm), high-pressure synthesis and characterization, 132, 73 Pr_{0.5}Ca_{0.5}MnO₃, insulator-metal transition induced by Cr and Co doping, letter to editor, 130, 162 $(R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$ (R = Nd,Sm,Eu), structural properties and oxygen stoichiometry, 133, 445 $(Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta}$, structural properties stoichiometry, 133, 445 Pr₂INi₂, Pr₄I₅Ni, and Pr₃I₃Os, condensed cluster phases, 129, 277 $Pr_{1-x}K_xMnO_3$ perovskites (x = 0-0.15), structure and properties, 132, 98 $(Pr/La)Co(CN)_6 \cdot 5H_2O$, mixed cationic systems, synthesis and crystal structure, 129, 12 PrMn₂O₅, high-oxygen-pressure preparation, structural refinement, and thermal behavior, 129, 105 Pr₂NiO_{4+δ}, La- and Sr-substituted, oxygenation and electrical properties, 131, 167 Pr₅Os₃C_{4-x}, preparation and crystal structure, 131, 49 PrRh₂B₂C, synthesis and characterization, 133, 77 γ-Pr₂S₃, doped and undoped, band electronic structure study through LMTO-TB calculations, **128**, 197 Pr₂Sn₂O₇, structural and bonding trends, 130, 58 PrTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, 130, 277 SrPrO₃ perovskite, structure and magnetic properties, 132, 337 Pressure oxygen, effect on $\text{La}_2\text{NiO}_{4+\delta}$ excess oxygen concentration and electrical conductivity, 131, 275 Promethium Hg₂Ba₂PmCu₂O_{8-δ}, synthesis and structural and magnetic characterization, 132, 163 Protonic mobility in brushite and monetite, IR spectroscopic and neutron scattering studies, 132, 6 Pseudobrookite phases reduced, $Mg_{5-x}Nb_{4+x}O_{15-\delta}$ (1.14 $\leq x \leq$ 1.60), formation from MgO-Nb₂O₅-NbO, **134**, 76 Pseudo-hollandites Rb_{0.62}Cr₅Te₈, synthesis, crystal structure, and electronic band structures of $Rb_xCr_5Te_8$ phases, 131, 326 Pyrochlores $La_{2-x}Cd_xRu_2O_{7-\delta}$, synthesis and characterization, 129, 308 $Pb_2(M_{1.5}W_{0.5})O_{6.5}$ (M = Ti,Sn), surface segregation and oxygen vacancy ordering, 130, 81 A_2 Ru₂O_{7-y} (A = Bi,Pb,Tl,rare earth), metallic and nonmetallic properties, structural and electronic factors in, letter to editor, 131, 405 $Ln_2Sn_2O_7$ (Ln = Y, La, Pr, Nd, Sm-Lu), structural and bonding trends, **130,** 58 Pyrohydrolysis in fluoride-containing borosilicate glasses, OH absorption bands due to, removal. 130, 330 relationship to groutite and manganite: hydrogen bonding and Jahn-

Teller distortion, 133, 486

aerosols, in synthesis of iron zircon pigments, 128, 102

spray, preparation of spinel zinc stannate thin films, 128, 305

Pyrolysis

Q

Quasicrystals

Al-Pd-Re

modulated photocurrent measurements, **133**, 224 photocurrent observations, **133**, 302

icosahedral, electronic properties, 133, 160

R

Radiospectroscopic properties

cubic BN, effect of chemically active media, 133, 292

Raman spectroscopy

arcaine sulfate, 133, 423

Ba₂Cu_xZn_{1-x}WO₆ mixed crystals, cooperative Jahn-Teller effect in, 129, 117

Ba_{5-x}Sr_xNb₄O₁₅ microwave dielectric ceramic resonators, 131, 2

 $Ba_3(VO_4)_2$ at high pressure, 132, 156

B₆O, Fourier transform spectra, **133**, 260

 $(CH_3NH_3)_2M(II)(SO_4)_2 \cdot 6H_2O(M(II) = Cu,Zn,Ni), 133, 407$

 $\text{EuB}_{6-x}C_x$ ($X \approx 0.1$), Fourier transform spectra, 133, 264

 $HLnTiO_4$ and $HLnTiO_4 \cdot xH_2O$ (Ln = La,Nd,Sm,Gd), 130, 110

 $MIn(MoO_4)_2$ and $MIn(WO_4)_2$ (M = Li, Na, K, Cs), 129, 287

IrSi₃P₃, 128, 142

LaB₆, Fourier transform spectra, 133, 264

 $Na_2Cu(SO_4)_2 \cdot 2H_2O$, 133, 407

 $NaLnTiO_4$ and $Na_2Ln_2Ti_3O_{10}$ (Ln = La, Nd, Sm, Gd), 130, 110

 β -(NH₄)₂FeF₅, hydrogen bonding-induced NH₄⁺ ordering at low temperature, **131**, 189

 $Ln_7O_6(BO_3)(PO_4)_2$ (Ln = La,Nd,Gd,Dy), 129, 45

RhSi₃P₃, 128, 142

SmB₆, Fourier transform spectra, 133, 264

 $Sr_3(VO_4)_2$ at high pressure, 132, 156

TeO₂-BaO-TiO₂ glasses, 132, 411

Ramsdellite

LiTi₂O₄, formation by heating-induced transformation of spinel struc-

relationship to groutite and manganite: hydrogen bonding and Jahn-Teller distortion, 133, 486

and rutile, $\text{Li}_x\text{Ti}_3\text{O}_6$ intergrowth phase related to, synthesis and characterization, 129, 7

Rare earth elements

Bi–Ln–V–O anionic conductors with δ-Bi₂O₃ fluorite-type structure (Ln = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), **134**, 219

 $Ln_{0.5}A_{0.5}$ MnO₃ (Ln = rare earth; A = alkaline earth), charge ordering in, dependence on size of A-site cation, letter to editor, **129**, 363

50Na₂O-49P₂O₅-0.5Eu₂O₃-0.5CeO₂: fluorescent photosensitive glass for optical memory and fluorescence holography, **134**, 362

rare earth transition metal borides and their hydrides, low-temperature synthesis, 133, 145

Redox energy

 $\mathrm{Mn^{3+}/Mn^{2+}}$, in ambient and high-pressure structures of LiMnVO₄, 128, 267

Reduction

 $\alpha\text{-Fe}_2O_3$ aciculate ultrafine particles to Fe $_3O_4$, kinetics, 134, 248 Reflectivity

 β -rhombohedral boron, **133**, 129

Relaxation mechanisms

rotation-induced, for external strains, application to boron-rich crystals, 133, 322

Renner-Teller effect

for cyclic crystals with geminal model, 129, 174

Rhenium

Al-Pd-Re quasicrystals

modulated photocurrent measurements, 133, 224

photocurrent observations, 133, 302

Al_{92-x}Pd_xRe₈-type quasicrystals, electronic properties, **133**, 160

Ca₃ReO₆, crystal structure, 131, 305

Sm₂ReO₅, crystal structure and magnetic properties, **132**, 196

 An_2Rh_2X (An = Pu,Am; X = In,Sn), synthesis, crystal chemistry, and physical properties, **134**, 138

R-Rh-B and R-Rh-B-C systems (R = rare earth), single crystal growth from molten copper flux, 133, 82

 RRh_2B_2C (R = rare earth), synthesis and characterization, 133, 77 $RhSi_3P_3$, Raman study, 128, 142

Sr₃MgRhO₆, synthesis, crystal structure, and magnetic properties, 130,

 $SrRh_2P_2$, electronic structure, substitution effects, and comparison with superconducting $LuNi_2B_2C$, 130, 254

Rietveld analysis

Cs₃Sb₂I₉ X-ray diffraction data: reconstructive phase transformation and kinetics, **134**, 319

 $\text{LiCr}_y \text{Mn}_{2-y} \text{O}_4$ ($0 \le y \le 1$) structural modifications induced by electrochemical Li deintercalation, **132**, 372

Rochelle salt

crystal structure, 131, 350

Rock salt

defect nitrides $La_{1-x}Ca_xN_{1-x/3}$ (0 < x < 0.7) prepared from LaN and Ca_3N_2 , 129, 144

Li₃Cu₂SbO₆ with partially ordered structure, synthesis, 131, 115

Li₂MnO₃, electric and magnetic properties, **131**, 94

Rotation-induced relaxation mechanism

for external strains, application to boron-rich crystals, 133, 322

RS-camphor

low-temperature crystal structure, 134, 211

Rubidium

RbBr· Me^{2+} Br₂·6H₂O (Me^{2+} = Co,Ni), crystallization and structure, **129.** 200

Rb₂Cr₂O(AsO₄)₂, preparation and crystal structure, **134**, 22

Rb_{0.62}Cr₅Te₈ pseudo-hollandite, synthesis, crystal structure, and electronic band structures of Rb_xCr₅Te₈ phases, **131**, 326

 $RbCu_{7-x}S_4$, electrical resistivity anomalies and superlattice modulations, role of vacancy ordering, 134, 5

Rb₂Mo₂WO₅(PO₄)₃, interconnected tunnel structure, 130, 48

Rb₅VONb₁₄O₃₈, synthesis and crystal structure, 134, 10

Rb₄YbI₆, synthesis and crystal structure, **128**, 66

 $RbZn_2(HPO_4)_2(H_2PO_4) \cdot 2H_2O$ and $RbZn(HPO_4)(H_2PO_4) \cdot H_2O$, syntheses and crystal structures, **134**, 148

Ruthenium

BaRuO₃, preapared at ambient pressure and possessing four-layer hexagonal structure, crystal structure refinement, **128**, 251

 $Ba_5Ru_{1.6}W_{0.4}Cl_2O_9$, 10-layer perovskite-related oxyhalide, crystal structure, 132, 407

CeRu₃B₂, heavy fermion superconductors, chemical bonding topology, 131, 394

CeRu₃Si₂, heavy fermion superconductors, chemical bonding topology, 131, 394

CeRu₄Sn₆, crystal structure, specific heat, and ¹¹⁹Sn Mössbauer spectroscopy, **134**, 326

 $La_{2-x}Cd_xRu_2O_{7-\delta}$, pyrochlore oxides, synthesis and characterization, 129, 308

La₂IRu₂, condensed cluster phase, 129, 277

 $La_{2-x}Sr_{2x}Cu_{1-x}Ru_xO_4$, linear Cu–O–Ru electronic interaction in two dimensions, 128, 169

Ru complex sensitizers of TiO₂ anatase nanopowders, crystal structure, 132. 60

Ru-Ge, Ru-Si, and Ru-Sn systems, binary compounds in, heat capacity and heat content measurements, 133, 439

 A_2 Ru₂O_{7-y} (A = Bi,Pb,Tl,rare earth) pyrochlores, metallic and non-metallic properties, structural and electronic factors in, letter to editor, **131**, 405

URu₂Si₂, heavy fermion superconductors, chemical bonding topology, 131, 394

Rutile

quadruple-rutile-type chain structure $Na_{0.875}Fe_{0.875}Ti_{1.125}O_4$, topotactic oxidation, 130, 184

and ramsdellite, $\text{Li}_x\text{Ti}_3\text{O}_6$ intergrowth phase related to, synthesis and characterization, 129, 7

ultrafine particles, transformation to anatase at negatively charged colloid surfaces, letter to editor, **132**, 447

S

Samarium

AlSmO₃, cation arrays in perovskite-type compounds, 128, 69

 ${\rm Bi_{1-x}Sm_xO_{1.5}}$, ion-ordered phases, stability, thermal behavior, and crystal structure, **129**, 98

Bi-Sm-V-O anionic conductors with δ -Bi₂O₃ fluorite-type structure, 134, 219

Ca_{1-x}Sm_xMnO₃, electron-doped, CMR effect in, 134, 198

 $Cu_r(SmS)_{1+\nu}(NbS_2)_2$, phase transition, **134**, 99

 $Hg_2Ba_2SmCu_2O_{8-\delta}$ synthesis and structural and magnetic characterization, 132, 163

HSmTiO₄ and HSmTiO₄·xH₂O, structure and Raman spectra, 130, 110

 $\text{La}_{1-x}\text{Sm}_x\text{TiO}_3$ (0 $\leq x \leq$ 1), magnetic and structural studies, letter to editor, 133, 583

NaSmTiO₄ and Na₂Sm₂Ti₃O₁₀, structure and Raman spectra, **130**, 110 SmB₄, polar and reticular microhardness anisotropy, **133**, 296 SmB_c

compounds based on, magnetic excitation spectrum, effect of mixed-valences state, **133**, 230

FT Raman spectroscopy, 133, 264

polar and reticular microhardness anisotropy, 133, 296

in thin film technology, 133, 279

Sm₃Ga₅O₁₂ garnet, electron density study, **132**, 300

 $SmMn_2O_5$, high-oxygen-pressure preparation, structural refinement, and thermal behavior, 129, 105

Sm₅Os₃C_{4-x}, preparation and crystal structure, 131, 49

 $(Sm_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$, structural properties and oxygen stoichiometry, 133, 445

Sm₂ReO₅, crystal structure and magnetic properties, 132, 196

SmRh₃B, single crystal growth from molten copper flux, 133, 82

SmRh₄B₄, single crystal growth from molten copper flux, 133, 82

SmRh₂B₂C, synthesis and characterization, 133, 77

Sm₂Sn₂O₇, structural and bonding trends, 130, 58

SmTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277

Scandium

Sc₂BC₂, bonding analysis, 133, 190

ScOOH, cation arrays, 131, 358

Second-harmonic generation

electrically poled borophosphate glasses, effects of introduction of niobium or sodium oxides, **133**, 529

Seebeck coefficient

 $(LaMn_{1-x}Ti_x)_{1-y}O_3$ ($x \le 0.05$), **133**, 466

 $Nd(Cr_{1-x}Ni_x)O_3$, **134**, 382

Selenidotellurates

 $\mathrm{Cs_4Te_xSe_{16-x}}$ (x=1,4) and $\mathrm{Cs_4Te_{9.74}Se_{13.26}}$, with ordered Se/Te rings and chains, methanolothermal design and structure, **134**, 364

Selenium

BaNbSe₃, quasi-one-dimensional selenide, phase transitions, **132**, 188 BaNb₂Se₅, superconductivity, **132**, 188

 $Cs_4Te_xSe_{16-x}$ (x = 1,4) and $Cs_4Te_{9.74}Se_{13.26}$, with ordered Se/Te rings and chains, methanolothermal design and structure, **134**, 364

 M_3 Fe₂(SeO₃)₆·2H₂O (M = Mg,Co,Ni), synthesis, crystal structure, and IR and Mössbauer spectroscopy, **131**, 54

La₂Cu(SeO₃)₄, synthesis and crystal structure, 133, 572

SbCrSe₃ 1D ferromagnet, structure determination by HREM image analysis, 132, 257

Sb₂Te_{3-x}Se_x crystals, point defects in, 129, 92

MSe₄ (M = group 10, group 11), edge-sharing square planar units, transition metal compounds with, square planar to rectangular distortion in, 128, 181

Sr_{1-x}Ba_xZrSe₃ series, structural evolutions in, 130, 20

ZnSe, zinc blende crystals, linear electro-optic coefficient, **130**, 54 Semiconductors

 $(LaMn_{1-x}Ti_x)_{1-y}O_3$ ($x \le 0.05$), electrical transport in, 133, 466

SERS, see Surface-enhanced Raman scattering

Sieve properties

proton-exchanged LiMn₂O₄ spinels for Li⁺, 131, 84

Silicon

AgI-Ag₂O-B₂O₃-SiO₂ system, reversible color changes in ion-conducting glasses prepared by microwave melting: structural implications, 131, 173

borosilicate glasses containing fluoride, OH absorption bands due to pyrohydrolysis in, removal, **130**, 330

 $B_{12}P_2$ doped with, interband transitions and phonon spectra, **133**, 140 $Ca_3(Cr,Al)_2Si_3O_{12}$ garnets, electron density study, **132**, 432

CeCu₂Si₂, heavy fermion superconductors, chemical bonding topology, 131, 394

CeO₂/SiO₂ systems, spreading and phase transformations in, **131**, 121 CeRu₃Si₂, heavy fermion superconductors, chemical bonding topology, **131**, 394

CsTiSi₂O_{6.5}

crystal structure, neutron and X-ray diffraction study, 130, 97 EXAFS and XANES studies, 129, 206

Cs₂TiSi₆O₁₅, crystal structure, **131**, 38

IrSi₃P₃, Raman study, 128, 142

La₆MgSi₂S₁₄, synthesis and structure, **131**, 399

Li₄SiO₄, superionic, vibrational spectra and energy characteristics, **134**, 232

NaAlO₂-NaAlSiO₄ system, cristobalite-related phases in, XRD and electron diffraction study, 131, 24

 $Na_2MSi_4O_{10}$ (M = Co, Ni), magnetic behavior, 131, 335

Na₄[(TiO)₄(SiO₄)₃]·6H₂O, rhombohedrally distorted titanosilicate pharmacosiderite, synthesis and crystal structure, **134**, 409

Pd/CeO₂/SiO₂ systems, spreading and phase transformations in, 131, 121

PtSi₂P₂, synthesis and crystal structure, 133, 473

 $PtSi_3P_2$, synthesis, crystal structure, and electrical resistivity, **133**, 473 $RhSi_3P_3$, Raman study, **128**, 142

Ru-Si systems, binary compounds in, heat capacity and heat content measurements, 133, 439

SiF₄, structural relationship to CuAl₂, 132, 151; erratum, 134, 431

Si₃N₄-BN composite ceramic, preparation, aminoboranes as BN source for, **133**, 164

 $R_{6+x/3}Si_{11}N_{20+x}O_{1-x}$ (R = Y and Gd–Lu), preparation and crystal structures, 129, 312

SiO₂, incipient reaction with Ca(OH)₂ under moderate mechanical stressing, mechanisms: changes in short-range ordering, **130**, 284

ThCr₂Si₂-type transition metal compounds, LMTO band structure calculations, 130, 254

URu₂Si₂, heavy fermion superconductors, chemical bonding topology, 131, 394

YB₄₁Si_{1,2}, crystal structure, **133**, 11

YB₄₄Si_{1.0}, single crystal growth, **133**, 55

ZrSiO₄, iron-doped pigments, synthesis by pyrolysis of aerosols, **128**, 102 ZrSi_{0.7}Sb_{1.3}, and ZrSn_{0.4}Sb_{1.6} and ZrGeSb: family containing ZrSiStype and β -ZrSb₂-type compounds, **134**, 388

Sillen

X1 structure, CaBiO₂Cl and SrBiO₂Cl disordered variants of, synthesis, 128, 115

Silver

 ${\rm Ag^+}$, electrochemical doping of oxide ceramics with ${\rm Ag-}\beta''$ - ${\rm Al_2O_3}$ ionic conductors, 128, 93

 ${
m Ag}X_4$ (X = O,S,Se), edge-sharing square planar units, transition metal compounds with, square planar to rectangular distortion in, 128, 181

Ag₂Ce(H₂O)(NO₃)₅, structure and thermal decomposition, temperaturedependent X-ray powder diffraction study, **132**, 361

AgI-Ag₂O-B₂O₃-SiO₂ system, reversible color changes in ion-conducting glasses prepared by microwave melting: structural implications, **131**, 173

AgTaS₃, structure and electrical conductivity, 132, 389

Ag_{1.92}Te, transport properties at 160°C, **130**, 140

Ag₂TiO₃, synthesis and crystal structure, 134, 17

 $Ag_{1.2}V_3O_8$, crystal structure: relationship to $Ag_2V_4O_{11-y}$ and interpretation of physical properties, **134**, 294

Ag₂VP₂O₈, structure and ionic conductivity, 130, 28

ions in solution, interaction with Cu₂Fe(CN)₆, **132**, 399

KAg₂, Laves phase, high-pressure synthesis, 130, 311

 $Mn_{1-x-y}Ag_y\Phi V_{2-2x-y}Mo_{2x+y}O_6$, solid solutions, synthesis and study, 133, 545

Silver(I) 2,2-dimethylglutarate

2-D framework built from tetranuclear $Ag_4(2,2-dimethylglutarate)_2$ oligomeric unit, 134, 332

Single crystal growth

doped rare earth manganate perovskites, letter to editor, **130**, 327 Sintering

B₄C, carbon black as aid for, 133, 68

Sodium

Ba₄CuNaO₄Cl₄, Cu(III) oxy-chloride, synthesis, structure, and electrical and magnetic properties, letter to editor, **129**, 360

Ca(PO₃)₂-CaB₄O₇-Na₂B₄O₇-Nb₂O₅, borophosphate glasses, synthesis and second-harmonic generation after poling treatment, **133**, 529

KNa(C₄H₄O₆)·4H₂O, structure, **131**, 350

Li₂Na(MoO)₂(PO₄)₃, synthesis and crystal structure, 129, 298

Na $^+$, electrochemical doping of oxide ceramics with Na- β'' -Al $_2$ O $_3$ ionic conductors, 128, 93

 $NaAlO_2$ - $NaAlSiO_4$ system, cristobalite-related phases in, XRD and electron diffraction study, 131, 24

 $NaCa_2M_2^{2+}(AsO_4)_3$ ($M^{2+} = Mg,Ni,Co$), cationic substitution effects on garnet–alluaudite polymorphism, **131**, 290

 $NaCaCdMg_2(AsO_4)_3$, alluaudite-like structure, 131, 298 $NaCoPO_4$

polymorph with edge-sharing Co²⁺ octahedral chains, synthesis and characterization, **131**, 160

with trigonal bipyramidal Co²⁺ and tunnel structure, 129, 328

Na₂Cu(SO₄)₂·2H₂O, IR and Raman spectra, 133, 407

Na₃Eu(CO₃)₃, structural and optical studies, 132, 33

 $\alpha\text{-NaFeO}_2,$ Ni $_{1+x}\text{Fe}_{2-2x/3}\text{O}_4$ obtained from, crystal and magnetic structures, 129, 123

 $Na_{0.875}Fe_{0.875}Ti_{1.125}O_4$, topotactic oxidation of quadruple-rutile-type chain structure, **130**, 184

NaH₂PO₄·2H₂O, high microwave susceptibility: synthesis of crystalline and glassy phosphates with NASICON-type chemistry, **132**, 349 Na₃In₂(AsO₄)₃

alluaudite-like structure, 134, 31

hydrothermal synthesis and structure, 131, 131

NaIn(MoO₄)₂ and NaIn(WO₄)₂, vibrational characteristics, **129**, 287

Na₃In₂(PO₄)₃, hydrothermal synthesis and structure, 131, 131

NaMgF₃ perovskites, thermochemistry, 132, 131

NaMoO₂AsO₄, preparation and crystal structure, 133, 386

Na₃(MoO)₂(PO₄)₃ with intersecting tunnel structure, synthesis and crystal chemistry, **132**, 249

NaO_{0.44}C_{5.84}, graphite intercalation compound with sodium and peroxide, **131**, 282

 $Na_3M(OH)(HPO_4)(PO_4)$ (M = Al,Ga), synthesis and chain structure, 128, 21

50Na₂O-49P₂O₅-0.5Eu₂O₃-0.5CeO₂: fluorescent photosensitive glass for optical memory and fluorescence holography, **134**, 362

 $Na_2MSi_4O_{10}$ (M = Co, Ni), magnetic behavior, 131, 335

 $Na_xTa_3N_5$ ($0 \le x \le 1.4$), synthesis and partial characterization, 132, 394 $NaLnTiO_4$ and $Na_2Ln_2Ti_3O_{10}$ (Ln = La,Nd,Sm,Gd), structure and Raman spectra, 130, 110

Na₄[(TiO)₄(SiO₄)₃]·6H₂O, rhombohedrally distorted titanosilicate pharmacosiderite, synthesis and crystal structure, **134**, 409

Na₂Ti₂Sb₂O layered tetragonal compound, phase transition and spin gap behavior in, **134**, 422

Na_{0.10}WO₃ bronze with distorted perovskite structure, X-ray and electron diffraction study. **133**, 479

 γ - Ln_2S_3 (Ln = La, Ce, Pr, Nd) doped with, band electronic structure study through LMTO-TB calculations, **128**, 197

Sol-gel synthesis

alumina doped with La and Ce, 128, 161

aluminum titanate, high-temperature phase formation in, FTIR study, 131, 181

BaTiO₃ thin films using glycolate precursor, **131**, 43

Fe₃O₄ thin films, **128**, 87

 $\rm La_2 CuO_{4+\delta}$ electrochemically oxidized particles prepared by, structural characterization, 131, 246

 $Sn_2P_2S_6$ at room temperature, **129**, 157

Solid oxide galvanic cell

determination of molar Gibbs energy of formation of BaMo₂O₇(s) using, 134, 416

Solid solutions

in B₆O–B₄C system, synthesis at high pressure and temperature electron energy-loss spectroscopy, **133**, 365 preparation and characterization, **133**, 356

 Ca_3N_2 and LaN, formation of defect rock salt nitrides $La_{1-x}Ca_xN_{1-x/3}$, 129, 144

CrZr_{0.75}Nb_{0.25}F₆, antiferrodistortive order in, 131, 231

LaFe_xNi_{1-x}O₃, crystal structure refinement and stability, 133, 379

 $Mn_{1-x-y}Ag_y\Phi V_{2-2x-y}Mo_{2x+y}O_6$, synthesis and study, 133, 545

supersaturated, TiB_2 – CrB_2 – WB_2 , phase formation during annealing of, 133, 25

Solventothermal synthesis

 $Cs_4Te_xSe_{16-x}$ (x=1,4) and $Cs_4Te_{9.74}Se_{13.26}$ with ordered Se/Te rings and chains, 134, 364

Specific heat

CeRu₄Sn₆, 134, 326

Spillover technique

modification of blue potassium molybdenum bronze, 128, 256 pinels

 $In_{16}Fe_8S_{32}$, chemically lithiated, structural and local environment modifications, 134, 238

 $\text{LiCr}_y \text{Mn}_{2-y} \text{O}_4$ (0 $\leq y \leq$ 1), structure modifications induced by electrochemical Li deintercalation, Rietveld analysis, **132**, 372

Li_xIn₁₆Fe₈S₃₂: structure and local environment after chemical lithium insertion, **134**, 238

LiMn₂O₄

charge–discharge process, in situ XAFS study, letter to editor, 133, 586 phases coexisting with $\rm Li_2MnO_3$, stoichiometry, XRD and EPR studies, 128, 80

proton-exchanged, surface structure and ${\rm Li}^+$ sieve properties, 131, 84 and related Li-rich spinel, electric and magnetic properties, 131, 94 Verwey-type transition and magnetic properties, 131, 138

X-ray absorption studies, letter to editor, 128, 326

 $\text{Li}_4 \text{Mn}_5 \text{O}_{12}$, structure refinement with neutron and X-ray powder diffraction data, 130, 74

Li₂O-TiO₂-Fe₂O₃, cation distribution, **134**, 170

LiTi₂O₄, transformation to ramsdellite upon heating, 132, 382

NiMn₂ $\square_{3\delta/4}$ O_{4+ δ}, nonstoichiometric, wide-angle X-ray scattering study, **129.** 271

Zn_{2-x}Sn_{1-x}In_{2x}O_{4-δ}, transparent conducting properties, **134**, 192 Zn₂SnO₄ thin films, spray pyrolysis preparation and humidity sensing characteristics, **128**, 305

Spin gap behavior

Na₂Ti₂Sb₂O layered tetragonal compound, 134, 422

Spin gap state

CaV₂O₅, letter to editor, **127**, 359; addendum, **129**, 367

Spin state

 Ni^{3+} ions, effect on electrical properties of $Nd(Cr_{1-x}Ni_x)O_3$, 134, 382 Spray pyrolysis

preparation of spinel zinc stannate thin films, 128, 305

Stability $\text{Bi}_{1-x}Ln_x\text{O}_{1.5}$ (Ln = Sm-Dy), ion-ordered phases, **129**, 98

K₂(VO)₂P₄O₁₃ in oxygen atmosphere, 132, 41

LaFe_xNi_{1-x}O₃ solid solutions, **133**, 379

NbS₂-IrS₂ system 1T structure, **129**, 242

 RRh_2B_2C (R = rare earth), 133, 77

Stacking

diamond-type, octahedral units of antiprism, (H₃O)Yb₃F₁₀·H₂O prepared by chimie douce synthesis, **128**, 42

geometrical unit of polyhedra UGP, in description of complex structures, 128, 52

Stoichiometry

LiMn₂O₄ and Li₂MnO₃ coexisting phases, XRD and EPR studies, 128,

oxygen in $(Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta}$ and $(R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2Nb$ $O_{10-\delta}$ (R = Nd,Sm,Eu), 133, 445

Stretching vibrations

symmetric, two-coordinate oxygen bridges in negative thermal expansion of $ZrV_xP_{2-x}O_7$ and AW_2O_8 (A=Zr,Hf) at high temperature, letter to editor, **129**, 160

Strontium

AlSr₂YCu₂O₇, structural order/disorder in, 133, 434

 $Ba_{2-x}Sr_xDyTaO_6$ (x = 0,1,2), development and dielectric properties, 133, 522

 $Ba_{5-x}Sr_xNb_4O_{15}$, microwave dielectric ceramic resonators, vibrational analysis, 131, 2

(Ba,Sr)_{1+y}UO_{3+x}, perovskite-related phases, structure and thermodynamics, **131**, 341

 $Bi_{2-x}Pb_xSr_{1.5}Ca_{1.5}Mn_2O_{9-\delta}$ with 2212 structure, synthesis and crystal chemistry, **132**, 420

Bi_{0.267}Pr_{0.733}SrO_{3-δ}, crystal structure and magnetic properties, neutron diffraction studies, **132**, 182

Bi₂Sr₂CuO₆, antiferromagnetic order, 133, 372

Bi₁₂Sr₁₈Fe₁₀O₅₂, HREM study: collapsed structure related to 2212 structure, **129**, 214

 $Bi_{1-x}Sr_xMnO_3$, magnetic and electrical properties, 132, 139

La_{0.6}Sr_{0.4}Co_{1-y}Fe_yO_{3- δ} (y=0-0.6), thermodynamic quantities and defect structure, high-temperature coulometric titration studies, **130**, 302

 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$, Coulometric titration at high temperature: electronic band structure effect on nonstoichiometry behavior, **133**, 555

 $La_{2-x}Sr_xCuO_{4-\delta}$, defect chemistry: oxygen nonstoichiometry and thermodynamic stability, **131**, 150

 $\text{La}_{2-x}\text{Sr}_{2x}\text{Cu}_{1-x}M_x\text{O}_4$ (M=Ti,Mn,Fe,Ru), linear Cu–O–M electronic interaction in two dimensions, **128**, 169

 $\text{La}_{1-x}\text{Sr}_x\text{FeO}_3$, nanocrystalline material sensitivity to ethanol, effect of Sr content, 130, 152

La-Sr-Mn-O system, phase equilibria, 134, 38

 $\text{Li}_3\text{Sr}_2M\text{N}_4$ (M=Nb,Ta), synthesis and structure, 130, 1

Pb₂Sr₂Cu₂TaO₈Cl, layered cuprate with hematophanite structure, synthesis and characterization, **130**, 154

 $(R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$ (R=Nd,Sm,Eu), structural properties and oxygen stoichiometry, **133**, 445

(Pr_{1.5}Ce_{0.5})Sr₂Cu₂TaO_{10-δ}, structural properties and oxygen stoichiometry, **133**, 445

 $Pr_{2-x}Sr_xNiO_{4+\delta}$, oxygenation and electrical properties, 131, 167

 ${\rm Sr^2}^+$, electrochemical doping of oxide ceramics with ${\rm Sr}$ - ${\beta''}$ - ${\rm Al_2O_3}$ ionic conductors, 128, 93

SrB₆, electronic structure calculations, 133, 51

 $Sr_{1-x}Ba_xZrSe_3$ series, structural evolutions in, 130, 20

 $Sr_{10-n/2}Bi_nFe_{20}O_m$ (n = 4,6,8,10), with high oxygen permeability, synthesis, **130**, 316

SrBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115

 $(Sr,Ca)_4Cu_6O_{10}$ three-leg-ladder compound, X-ray single-crystal structure analysis, **134**, 427

Sr₃Cu₂Fe₂O₅S₂, crystal structure, **134**, 128

 Sr_2CuMO_3S (M = Cr, Fe, In), crystal structure, 134, 128

 $Sr_2Cu_2MO_2S_2$ (M = Mn,Zn), synthesis and properties, 130, 319

 $Sr_{3-x}A_xFe_2O_7$ ($x \le 0.4$; A = Ba,La), electronic state, magnetism, and electrical transport behavior, 130, 129

Sr₃MgMO₆ (M = Pt,Ir,Rh), synthesis, crystal structure, and magnetic properties, **130**, 35

 $Sr_4Mn_3(B_{1-x}Mn_x)O_{10}$, related to cubic perovskite structure, synthesis and characterization, **134**, 395

SrO-CaO-CuO system under high pressure, compounds and phase relations, 132, 274

SrPrO₃ perovskite, structure and magnetic properties, 132, 337

SrRh₂P₂, electronic structure, substitution effects, and comparison with superconducting LuNi₂B₂C, 130, 254

Sr₂SnO₄, Pr⁴⁺ doped in, EPR spectra, 130, 250

Sr₃(VO₄)₂, high-pressure behavior, **132**, 156

substitution in superconducting $RBa_2Cu_4O_8$ (R = Gd,Ho), 128, 310

Tl₅Ba₃Sr₅Cu₃O₁₉, 1201 shear like phase, **128**, 150

 $(Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}$ (0 $\leq x \leq$ 2) with Tl-2212-type structure, preparation and characterization, **132**, 308

 $Tl_{1-x}Sr_2Cu_{1-y}M_{x+y}O_{5-\delta}$ (M = Nb, Ta, W), 1201-based cuprate, cation ordering in, **132**, 113

Structure

alluaudite-like

NaCaCdMg₂(AsO₄)₃, 131, 298

Na₃In₂(AsO₄)₃, **134**, 31

AlSr₂YCu₂O₇ order/disorder, 133, 434

 β -alumina, BaO–Al₂O₃–AlN system with, analysis, **129**, 66 amorphous boron, **133**, 211

Ba-Cu-C-O system, equivalence of CO₃ and CuO_x groups, 129,

 $Ba_4CuMO_4Cl_4$ (M=Li,Na), Cu(III) oxy-chlorides, letter to editor, 129, 360

Ba₈₈Ni₈₇O₁₅₆(CO₃)₁₉, 128, 220

Ba₁₁Pd₁₁O₂₀(CO₃)₂, 128, 220

 $(Ba,Sr)_{1+y}UO_{3+x}$, perovskite-related phases, 131, 341

BaTiO₃-LaAlO₃ and BaTiO₃-LaAlO₃-LaTi_{3/4}O₃ systems, 129, 223

Ba_{1+v}UO_{3+x}, perovskite-related phases, **131**, 341

Ba₃(VO₄)₂, changes at high pressure, 132, 156

B₄C-C injection molded ceramics, microstructure, 133, 68

BN, cubic, effect of chemically active media, 133, 292

 B_6O_{1-x} high-strength compounds, 133, 88

boron carbide, B-C-Al compounds with, IR active phonon spectra, 133, Ba₆Cu₁₂Fe₁₃S₂₇, synthesis and crystal structure, 128, 62 B₁₂S_{2-x}, high-strength compounds, structure and bulk modulus, 133, $B_{12}S_{2-x}$ high-strength compounds, 133, 88 $Ca_{1-x}La_xS$ (x = 0-0.3), **131**, 101 $Ca_{1-x}La_xS$ (x = 0-0.3), structural and luminescence properties, 131, 101 collapsed, related to 2212 structure, $Bi_{12}Sr_{18}Fe_{10}O_{52}$, 129, 214 $(CH_3NH_3)_2M(II)(SO_4)_2 \cdot 6H_2O$ (M(II) = Cu,Zn,Ni), IR and Raman convex, bare boron clusters, 133, 182 spectra, 133, 407 C₂₉H₃₀N₅O₄S₂Ru, crystal structure, 132, 60 crystal, see Crystal structure CuAl₂, relationship to SiF₄, 132, 151; erratum, 134, 431 Cr₂S₃, ammonolysis: synthesis of CrN, 134, 120 1,10-decanedicarboxylic acid/urea inclusion compound, temperature-[Cu(II)(6-mercaptopurinolate²⁻)]_n, magnetic study, 132, 78 $ACu_{7-x}S_4$ (A = Tl,K,Rb), electrical resistivity anomalies and superdependent properties, 128, 273 electronic, see Electronic structure lattice modulations, role of vacancy ordering, 134, 5 electronic band, see Electronic band structure $Cu_x(MS)_{1+y}(NbS_2)_2$ (M = Ce,Sm), phase transition, 134, 99 hematophanite, Pb₂Sr₂Cu₂TaO₈Cl layered cuprate, **130**, 154 In₁₆Fe₈S₃₂ spinel, chemically lithiated, structural and local environment (H₃O)Yb₃F₁₀· H₂O prepared by chimie douce synthesis, ab initio determodifications, 134, 238 mination, 128, 42 La₆MgGe₂S₁₄, synthesis and structure, 131, 399 $HLnTiO_4$ and $HLnTiO_4 \cdot xH_2O$ (Ln = La,Nd,Sm,Gd), 130, 110 La₆MgSi₂S₁₄, synthesis and structure, 131, 399 Na₂Cu(SO₄)₂·2H₂O, IR and Raman spectra, 133, 407 incommensurate, L-Ta₂O₅-type phases in Ta₂O₅-WO₃ system, 126, 208; erratum, 129, 368 NbS₂-IrS₂ system, 1T structure stability, **129**, 242 In₁₆Fe₈S₃₂ spinel, chemically lithiated, **134**, 238 NiCr₂S₄, structure and magnetism, powder neutron diffraction study, In₅Mo₁₈O₂₈, HREM real-structure study, 130, 290 **134.** 110 ion-conducting glasses prepared by microwave melting, implications of (3PbO·PbSO₄·H₂O), crystal structure, **132**, 173 reversible color changes, 131, 173 MPd_3S_4 bronzes (M = La,Nd,Eu), crystal structure and electrical con- $La_{2-x}Cd_xRu_2O_{7-\delta}$ pyrochlore oxides, **129**, 308 ductivity, 129, 1 $La_{1-x}Sm_xTiO_3$ (0 $\leq x \leq 1$), letter to editor, 133, 583 γ - Ln_2S_3 (Ln = La, Ce, Pr, Nd), doped and undoped, band electronic struc- $\text{LiCr}_{y}\text{Mn}_{2-y}\text{O}_{4}$ ($0 \le y \le 1$), modifications induced by electrochemical Li ture study through LMTO-TB calculations, 128, 197 deintercalation, Rietveld analysis, 132, 372 MS_4 (M = group 10, group 11), edge-sharing square planar units, Li₂Fe₂(MoO₄)₃, weak ferromagnetic ground state structure, **130**, 147 transition metal compounds with, square planar to rectangular LiMn₂O₄ surface of proton-exchanged spinel, 131, 84 distortion in, **128**, 181 Sb₂S₃-As₂S₃-Tl₂S glasses, ¹²¹Sb Mössbauer spectroscopy, **133**, 458 Li_{0.5-3x}Nd_{0.5+x}TiO₃ perovskites, microstructural study, **128**, 97 Magneli phases, translational disorder generated by oriented defects in, Sn₂P₂S₆, synthesis at room temperature, **129**, 157 **131,** 215 Sr₃Cu₂Fe₂O₅S₂, crystal structure, 134, 128 magnetic, see Magnetic structure Sr_2CuMO_3S (M = Cr, Fe, In), crystal structure, 134, 128 $Mn_7Sb_4(\mu_5-O)_2(\mu_4-O)_2(\mu_3-OEt)_2(\mu-OEt)_{16}(HOEt)_2$, 134, 312 $Sr_2Cu_2MO_2S_2$ (M = Mn,Zn), synthesis and properties, 130, 319 NaO_{0.44}C_{5.84} graphite intercalation compound with sodium and perox-TiS₂, ammonolysis: synthesis of TiN, 134, 120 ide, 131, 282 VS₂, ammonolysis: synthesis of VN, **134**, 120 $NaLnTiO_4$ and $Na_2Ln_2Ti_3O_{10}$ (Ln = La, Nd, Sm, Gd), 130, 110 [Zn-Cr-SO₄] lamellar double hydroxides, selective synthesis, 130, 66 NbS₂-IrS₂ system, 1T structure stability, **129**, 242 ZnS, zinc blende crystals, linear electro-optic coefficient, 130, 54 NiAs-Ni₂In-related, in Mn-Sn system, 129, 231 Superconductivity Ni-6 mass% B-58.6 mass% Mo-10 mass% X (X = V, Fe, Co,BaNb₂Se₅, 132, 188 Ti,Mn,Zr,Nb,W), high-strength boride base hard material microchemical geminal charge transfer, vibronic degeneracy effects, and dopstructure, 133, 243 ing excitons in, 129, 174 RNi_2B_2C (R = Tm,Er), T_C , effects of Pd, Pt, and Co dopants, 133, 5 nuclear, U₃Ga₂Ge₃, neutron powder diffraction study, 131, 72 ABO₄, cation sublattice and coordination polyhedra in, 129, 82 $(R_{1-x}, Pr_x)Ba_4Cu_7O_{14+\delta}$ (R = Nd,Eu,Tm), **132**, 73 oxyhydroxides of trivalent metals, cation array of, 131, 358 quaternary borocarbides, 133, 169 $(R_{1-x}, Pr_x)Ba_4Cu_7O_{14+\delta}$ (R = Nd,Eu,Tm), 132, 73 ThCr₂Si₂-type transition metal compounds, 130, 254 $(R_{1.5-x}Pr_xCe_{0.5})Sr_2Cu_2NbO_{10-\delta}$ (R = Nd,Sm,Eu), 133, 445 Superconductors $(Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta}$, 133, 445 $RBa_2Cu_4O_8$ (R = Gd,Ho), Sr substitution in, 128, 310 $Pr_{1-x}K_xMnO_3$ perovskites (x = 0-0.15), **132**, 98 heavy fermion, chemical bonding topology, 131, 394 ramsdellite and rutile, Li_xTi₃O₆ intergrowth phase related to, synthesis thin film, barium rare-earth antimonates suitable as substrates for, and characterization, 129, 7 characterization, 128, 247 rock salt, partially ordered, Li₃Cu₂SbO₆ with, synthesis, 131, 115 YBa₂Cu₃O_v, electrochemical doping with $M-\beta''$ -Al₂O₃ ionic conductors, SiF₄, relationship to CuAl₂, **132**, 151; erratum, **134**, 431 **128.** 93 $YBa_2Cu_3O_{7-\delta}$, substrates $Ba_{2-x}Sr_xDyTaO_6$ (x = 0,1,2) for, developspherical, bare boron clusters, 133, 182 $Sr_3(VO_4)_2$, changes at high pressure, 132, 156 ment and dielectric properties, 133, 522 TeO₂-BaO-TiO₂ glasses, 132, 411 Superionics TiB₂ PVD coatings, 133, 117 Li₄SiO₄ and Li₄GeO₄, vibrational spectra and energy characteristics, $(Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}$ (0 \leq x \leq 2), Tl-2212-type structure, **132**, 308 134, 232 transition metal compounds of edge-sharing square planar units MX_4 , Superlattice reflections in $ACu_{7-x}S_4$ (A = Tl,K,Rb), role of vacancy ordering, 134, 5 square planar to rectangular distortion in, 128, 181 tunnel, see Tunnel structure Surface-enhanced Raman scattering YB₆₆(100) surface, **133**, 31 arcaine sulfate, 133, 423 ZrSi_{0.7}Sb_{1.3}, ZrSn_{0.4}Sb_{1.6}, and ZrGeSb, 134, 388 Surfaces Cr₂O₃ microcrystals, chemical behavior of Sn dopant atoms on, Möss-AgTaS₃, structure and electrical conductivity, 132, 389 bauer study, 132, 284

negatively charged colloid, transformation of ultrafine rutile particles to anatase at, letter to editor, 132, 447 $Pb_2(M_{1.5}W_{0.5})O_{6.5}(M = Ti,Sn)$ defect pyrochlores, properties, 130, 81 $YB_{66}(100)$, structure and chemistry, 133, 31 Synthesis, see also Hydrothermal synthesis; Sol-gel synthesis Ag₂TiO₃, 134, 17 AlN, by microwave techniques, 130, 266 $[Al_3P_4O_{16}]^{3-} \cdot 3[CH_3CH_2NH_3]^+$, nonaqueous preparation, 129, 37 2-amino-5-nitropyridinium chloride nonlinear optical materials, 129, 22 An_2T_2X (An = Pu,Am; T = Co,Ir,Ni,Pd,Pt,Rh; X = In,Sn), 134, 138 $B_0 X_0 (X = Cl, Br, I), 133, 59$ BaCuB₂O₅, noncentrosymmetric pyroborate, 129, 184 Ba₂Cu₃Cl₂O₄, **124**, 319; comment, **130**, 161 Ba₆Cu₁₂Fe₁₃S₂₇, **128**, 62 $Ba_4CuMO_4Cl_4$ (M = Li,Na), Cu(III) oxy-chlorides, letter to editor, 129, BaFe₂O₄ and BaFe₁₂O₁₉ particles using combustion method, 134, 227 BaGe₂, 133, 501 Ba₆Mn₂₄O₄₈ with composite tunnel structure, 132, 239 Ba₈₈Ni₈₇O₁₅₆(CO₃)₁₉, **128**, 220 Ba₁₁Pd₁₁O₂₀(CO₃)₂, **128**, 220 $Ba_{2-x}Sr_xDyTaO_6$ (x = 0,1,2), **133**, 522 in B-C-N-O system at high pressure and temperature electron energy-loss spectroscopy, 133, 365 materials prepared by, 133, 356 $Bi_{2-x}Pb_{x}Sr_{1} {}_{5}Ca_{1} {}_{5}Mn_{2}O_{9-\delta}$ with 2212 structure, **132**, 420 CaBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115 Ca(PO₃)₂-CaB₄O₇-Na₂B₄O₇-Nb₂O₅ borophosphate glasses, 133, 529 Cd₈As₇Cl: pnictidohalide with new structure type, **134**, 282 $[C_{10}N_2H_9][Al(PO_4)(PO_2(OH)_2)]$, 128, 318 CrN, from ammonolysis of Cr₂S₃, 134, 120 CrWN₂, 128, 185 crystalline and glassy phosphates with NASICON-type chemistry, using high microwave susceptibility of NaH₂PO₄·2H₂O, 132, 349 $CsMo_6O_{10}(Mo_2O_7)(PO_4)_4$, 128, 233 $Cs_4Te_xSe_{16-x}$ (x = 1,4) and $Cs_4Te_{9.74}Se_{13.26}$ by methanolothermal reaction, 134, 364 Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)] two-dimensional solid with pillared layers, 132, 144 $Ln_3Cu_4P_4O_2$ (Ln = La,Ce,Nd), **129**, 250 doped rare earth manganate perovskite crystals using fused salt electrolysis, letter to editor, 130, 327 $M_3 \text{Fe}_2(\text{SeO}_3)_6 \cdot 2\text{H}_2\text{O} \ (M = \text{Mg,Co,Ni}), 131, 54$ Fe_4W_2N with unique η -carbide structure, 134, 302 (Fe_{0.8}W_{0.2})WN₂, 131, 374 GaPO₄ thin films, 134, 91 $Hg_2Ba_2LnCu_2O_{8-\delta}$ (Ln = Nd-Gd,Dy-Lu), 132, 163 HoMnO₃ with metastable perovskite-type structure, 129, 334 (H₃O)Yb₃F₁₀·H₂O by chimie douce route, **128**, 42 $In_2Ba_2CuO_{6-\delta}$ layered cuprate, 131, 177 KAg₂ Laves phase at high pressure, **130**, 311 $KAl(HPO_4)_2 \cdot H_2O$, 132, 47 K₅In₅Ge₅As₁₄ layered materials, 130, 234 K₈In₈Ge₅As₁₇ layered materials, **130**, 234 K₂(VO)₂P₄O₁₃ with tunnel structure, 132, 41

 $La_{2-x}Cd_xRu_2O_{7-\delta}$ pyrochlore oxides, **129**, 308

LaMnO_{3+ δ} by firing gels using citric acid, **129**, 60

milling, letter to editor, 132, 443

Li₃AlN₂, by microwave techniques, **130**, 266

 La_2IZ_2 (Z = Fe,Co,Ru,Os) condensed cluster phases, 129, 277

lanthanum molybdates with La:Mo ratio of 1:1 by high-energy ball

La₂Cu(SeO₃)₄, **133**, 572

La₆MgGe₂S₁₄, **131**, 399 La₆MgSi₂S₁₄, **131**, 399 Li₃Cu₂SbO₆ with partially ordered rock salt structure, 131, 115 Li₃FeN₂, by microwave techniques, 130, 266 Li₃Mo₃O₅(PO₄)₃ with bidimensional connection of MoO₆ octahedra, 133, 391 Li(Mo,W)₂O₃(PO₄)₂ with intersecting tunnel structure, **128**, 215 Li₂Na(MoO)₂(PO₄)₃, 129, 298 Li₂Pd₃B and Li₂Pt₃B with boron in octahedral position, 133, 21 $\text{Li}_3\text{Sr}_2M\text{N}_4 (M = \text{Nb},\text{Ta}), 130, 1$ Li₅TiN₃, by microwave techniques, 130, 266 Li_{0.74}Ti₃O₆, 129, 7 $[Mg_{0.174}Ga_{0.256}(OH)_2](CO_3)_{0.134} \cdot mH_2O$, 131, 78 $Mn_{1-x-y}Ag_y\Phi V_{2-2x-y}Mo_{2x+y}O_6$ solid solutions, 133, 545 $Mn_7Sb_4(\mu_5-O)_2(\mu_4-O)_2(\mu_3-OEt)_2(\mu-OEt)_{16}(HOEt)_2$, **134,** 312 NaCoPO₄ polymorph with edge-sharing Co²⁺ octahedral chains, 131, 160 with trigonal bipyramidal Co²⁺ and tunnel structure, 129, 328 Na₃(MoO)₂(PO₄)₃ with intersecting tunnel structure, 132, 249 NaO_{0.44}C_{5.84} graphite intercalation compound with sodium and peroxide, 131, 282 $Na_3M(OH)(HPO_4)(PO_4)$ (M = Al,Ga), 128, 21 50Na₂O-49P₂O₅-0.5Eu₂O₃-0.5CeO₂: fluorescent photosensitive glass for optical memory and fluorescence holography, 134, 362 $Na_xTa_3N_5$ (0 $\leq x \leq$ 1.4), **132**, 394 N(CH₃)₄·Zn(H₂PO₄)₃, molecular cluster, 131, 363 N(CH₃)₄·Zn(HPO₄)(H₂PO₄), open framework phase built up from low-density 12-ring topology, 131, 363 NH₂CH=NH₂SnI₃ cubic perovskite and related systems, **134**, 376 [NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganicorganic layers, 132, 229 $[NH_4]^+[(Sn_3O)_2(PO_4)_3]^-$, **134**, 207 $(NH_4)_2[(Ti_3O_2)(HPO_4)_2(PO_4)_2], 132, 213$ oxynitrides in ZrO2-rich part of Ca-Zr-O-N and Mg-Zr-O-N systems, **128**, 282 Pb₂Sr₂Cu₂TaO₈Cl layered cuprate with hematophanite structure, 130, 154 $(R_{1-x}Pr_x)Ba_4Cu_7O_{14+\delta}$ (R = Nd,Eu,Tm) at high pressure, 132, 73 Pr₂INi₂, Pr₄I₅Ni, and Pr₃I₃Os condensed cluster phases, **129**, 277 (Pr/La)Co(CN)₆·5H₂O mixed cationic systems, 129, 12 PtSi₂P₂ and PtSi₃P₂, 133, 473 rare earth transition metal borides and their hydrides at low temperature, 133, 145 Rb_{0.62}Cr₅Te₈ pseudo-hollandite, 131, 326 Rb₅VONb₁₄O₃₈, 134, 10 Rb₄YbI₆, 128, 66 $RbZn_2(HPO_4)_2(H_2PO_4) \cdot 2H_2O$ and $RbZn(HPO_4)(H_2PO_4) \cdot H_2O$, 134, RRh_2B_2C (R = rare earth), 133, 77 Sn(O₃PCH₂CH₃) layered phase at room temperature, 132, 438 $Sr_{10-n/2}Bi_nFe_{20}O_m$ (n = 4,6,8,10), Co-free oxides with high oxygen permeability, 130, 316 SrBiO₂Cl, disordered variant of Sillen X1 structure, 128, 115 $Sr_2Cu_2MO_2S_2$ (M = Mn,Zn), 130, 319 Sr_3MgMO_6 (M = Pt,Ir,Rh), 130, 35 Sr₄Mn₃(B_{1-x}Mn_x)O₁₀ related to cubic perovskite structure, 134, TeMo₅O₁₆ two-dimensional conductor, **129**, 303 $LnTh_2F_{11}$ (Ln = La-Lu, Y), metastable series with cationic and anionic disorder, 130, 277 by ammonolysis of TiS₂, 134, 120 by microwave techniques, 130, 266 $[Ti_2O(PO_4)_2(H_2O)_2]$, 132, 213 $[Ti_3(PO_4)_4(H_2O)_2] \cdot NH_3$, 132, 213 Tl₅Ba₃Sr₅Cu₃O₁₉, 1201 shear like phase, **128**, 150

 $(Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}~(0 \le x \le 2)$ with Tl-2212-type structure, 132. 308

 $Tl_{1-x}Sr_2Cu_{1-y}M_{x+y}O_{5-\delta}$ (M = Nb, Ta, W), 1201-based cuprate, 132, 113

VN

by ammonolysis of VS₂, **134**, 120

by microwave techniques, 130, 266

W₅As_{2.5}P_{1.5} with one-dimensional vertex-linked W₆ cluster, 131, 310 YBa₂Cu₃O_{6+x}, orthorhombic, dependence of lattice parameters on oxygen content, 134, 356

YMnO₃ with metastable perovskite-type structure, 129, 334

[Zn-Cr-SO₄] lamellar double hydroxides, 130, 66

ZrSi_{0.7}Sb_{1.3}, ZrSn_{0.4}Sb_{1.6}, and ZrGeSb, **134**, 388

Т

Tantalum

AgTaS₃, structure and electrical conductivity, 132, 389

 $Ba_{2-x}Sr_xDyTaO_6$ (x = 0,1,2), development and dielectric properties, 133, 522

Ba₅Ta₄O₁₅, luminescence, **134**, 187

Li₃Sr₂TaN₄, synthesis and structure, 130, 1

 $Na_xTa_3N_5$ (0 $\le x \le 1.4$), synthesis and partial characterization, 132, 394

Pb₂Sr₂Cu₂TaO₈Cl, layered cuprate with hematophanite structure, synthesis and characterization, **130**, 154

 $(Pr_{1.5}Ce_{0.5})Sr_2Cu_2TaO_{10-\delta}$, structural properties and oxygen stoichiometry, 133, 445

Ta₂O₅-WO₃ system, incommensurate structures of *L*-Ta₂O₅-type phases in, **126**, 208; *erratum*, **129**, 368

 $Tl_{1-x}Sr_2Cu_{1-y}Ta_{x+y}O_{5-\delta}$, 1201-based cuprate, cation ordering in, **132**, 113

Tellurium

Ag_{1.92}Te, transport properties at 160°C, **130**, 140

 $Cs_4Te_xSe_{16-x}$ (x = 1,4) and $Cs_4Te_{9.74}Se_{13.26}$, with ordered Se/Te rings and chains, methanolothermal design and structure, **134**, 364

Rb_{0.62}Cr₅Te₈ pseudo-hollandite, synthesis, crystal structure, and electronic band structures of Rb_xCr₅Te₈ phases, **131**, 326

 $Sb_2Te_{3-x}Se_x$ crystals, point defects in, 129, 92

 $TeMo_5O_{16}$, two-dimensional conductor, synthesis and crystal structure, 129, 303

TeO₂-BaO-TiO₂ glasses, structural and nonlinear optical characterizations, **132**, 411

ZnTe, zinc blende crystals, linear electro-optic coefficient, 130, 54

TEM, see Transmission electron microscopy

Temperature effects

1,10-decanedicarboxylic acid/urea inclusion compound structure, 128,

La₂NiO_{4+δ} excess oxygen concentration and electrical conductivity, **131**, 275

Terbium

Al₅Tb₃O₁₂, cations arrays in garnet-type compounds, 128, 69

 $Bi_{1-x}Tb_xO_{1.5}$, ion-ordered phases, stability, thermal behavior, and crystal structure, **129**, 98

Bi-Tb-V-O anionic conductors with δ -Bi₂O₃ fluorite-type structure,

Cs₂KTbCl₆, crystal structure by powder x-ray diffraction, 132, 1

Li₈TbO₆, magnetic susceptibility and EPR spectra, 128, 228

TbB₄, polar and reticular microhardness anisotropy, 133, 296

TbB₆, incongruently melting, single crystal growth and properties, 133,

Tb₄C₅, crystal structure, 132, 294

Tb₃Ga₅O₁₂ garnet, electron density study, 132, 300

TbOOH, cation arrays, 131, 358

TbRh₂B₂C, synthesis and characterization, 133, 77

 $Tb_{6+x/3}Si_{11}N_{20+x}O_{1-x}$, preparation and crystal structure, 129, 312

Tb₂Sn₂O₇, structural and bonding trends, 130, 58

TbTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277

Tetranuclear silver cluster

 $Ag_4(2,2-dimethylglutarate)_2$, 2-D framework built from, 134, 332 Thallium

BaTl_{0.5}Sb_{0.5}O₃, ordered perovskite, structural analysis, letter to editor, 128, 323

Sb₂S₃-As₂S₃-Tl₂S glasses, ¹²¹Sb Mössbauer spectroscopy, **133**, 458

Tl₅Ba₃Sr₅Cu₃O₁₉, 1201 shear like phase, **128**, 150

TlB₃O₅, crystal structure, 131, 370

TlCu_{7-x}S₄, electrical resistivity anomalies and superlattice modulations, role of vacancy ordering, **134**, 5

 $(Tl_{1.5}Hg_{0.5})Sr_{3-x}Ba_xFe_2O_{9-\delta}$ (0 $\leq x \leq$ 2) with Tl-2212-type structure, preparation and characterization, 132, 308

Tl₂Ru₂O_{7-y} pyrochlores, metallic and nonmetallic properties, structural and electronic factors in, letter to editor, **131**, 405

 $Tl_{1-x}M_{x+y}Sr_2Cu_{1-y}O_5$ (M = Nb, Ta, W), 1201-based cuprate, cation ordering in, 132, 113

Thermal analysis

Cu₂(OH)₃(CH₃COO)·H₂O, 131, 252

 α -Zr(HPO₄)₂·H₂O large crystals, 132, 17

Thermal conductivity

boron and boron phosphide CVD wafers, 133, 314

Thermal decomposition

Ag₂Ce(H₂O)(NO₃)₅, temperature-dependent X-ray powder diffraction study, 132, 361

copper(II) dicalcium(II) formate, 132, 235

Cu_xMn_{1-x}(HCOO)₂·2H₂O mixed crystals to copper-manganese oxides, **133**, 416

hydrated potassium molybdenum bronzes, 132, 330

Thermal expansion

negative

in large molybdate and tungstate family, letter to editor, 133, 580

 $ZrV_xP_{2-x}O_7$ and AW_2O_8 (A=Zr,Hf), symmetric stretching vibrations of two-coordinate oxygen bridges in, letter to editor, **129**, 160

titanium at low temperature, **129**, 53 ZrV_2O_7 from -263 to $470^{\circ}C$, **132**, 355

Thermal properties

 $Bi_{1-x}Ln_xO_{1.5}$ (Ln = Sm-Dy), ion-ordered phases, 129, 98

La₃MoO₇, **129**, 320

 RMn_2O_5 (R = La, Pr, Nd, Sm, Eu), 129, 105

NaCoPO₄ polymorph with edge-sharing Co²⁺ octahedral chains, 131,

NH₂CH=NH₂SnI₃ cubic perovskite and related systems, **134**, 376 Thermodynamics

 $(Ba,Sr)_{1+y}UO_{3+x}$, perovskite-related phases, 131, 341

 $Ba_{1+y}UO_{3+x}$, perovskite-related phases, **131**, 341

 $K_2U_4O_{12}$ and $K_2U_4O_{13}$, EMF and calorimetric measurements, 132, 342

 LaB_6 , crystal preparation from Al flux using compound precursors, 133, 237

 $La_{0.6}Sr_{0.4}Co_{1-y}Fe_yO_{3-\delta}$ (y=0--0.6), high-temperature coulometric titration studies, ${\bf 130,\ 302}$

 $La_{2-x}Sr_xCuO_{4-\delta}$, stability, **131**, 150

NaMgF₃ perovskites, 132, 131

orientationally disordered phases in two-component systems, 133, 536 Thermoelectric power

boron and boron phosphide CVD wafers, 133, 314

Thermogravimetry

La₂O₃-Co-Co₂O₃ system at 1100 and 1150°C, **131**, 18

Thermopower study

FeNbO₄, **134**, 253

Thin films

BaTiO₃, preparation using glycolate precursor, 131, 43

boron, preparation and properties, 133, 100

Fe₃O₄, synthesis via sol-gel method, characterization, and magnetic properties, **128**, 87

GaPO₄, synthesis and dielectric properties, 134, 91

magnesium phthalocyanine prepared by vacuum evaporation, electrical and optical characterization, 128, 27

superconducting, barium rare-earth antimonates suitable as substrates for, characterization, **128**, 247

technology, borides in, 133, 279

Ti:WO₃, translational disorder generated by oriented defects in Magneli phases, **131**, 215

ZnO, modification by Ni, Cu, and Cd doping, 128, 176

Zn₂SnO₄ spinel, spray pyrolysis preparation and humidity sensing characteristics, 128, 305

Thorium

ThB₄, polar and reticular microhardness anisotropy, 133, 296

ThB₆, polar and reticular microhardness anisotropy, 133, 296

ThCr₂Si₂-type transition metal compounds, LMTO band structure calculations, **130**, 254

 $LnTh_2F_{11}$ (Ln = La-Lu, Y), metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277

Thulium

Al₅Tm₃O₁₂, cations arrays in garnet-type compounds, **128**, 69

 $Hg_2Ba_2ErTm_2O_{8-\delta}$, synthesis and structural and magnetic characterization, 132, 163

TmB₄, polar and reticular microhardness anisotropy, 133, 296

 $Tm_2Ba_4Cu_7O_{14+\delta}$, Pr-doped, high-pressure synthesis and characterization. 132. 73

TmCuBaO₅, Gibbs free energy of formation, determination by EMF method, **134**, 85

TmNi₂B₂C, superconducting and magnetic ordering temperatures, effects of Pd, Pt, and Co dopants, 133, 5

Tm–Rh–B system, single crystal growth from molten copper flux, **133**, 82 Tm_{6+x/3}Si₁₁N_{20+x}O_{1-x}, preparation and crystal structure, **129**, 312

Tm₂Sn₂O₇, structural and bonding trends, 130, 58

TmTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277

Tin

Ba₂SnO₄, Pr⁴⁺ doped in, EPR spectra, 130, 250

Bi₂Sn₂O₇, Y-doped, bonding and structural variations in, 131, 317

CeRu₄Sn₆, crystal structure, specific heat, and ¹¹⁹Sn Mössbauer spectroscopy, **134**, 326

dopant atoms on surface of $\rm Cr_2O_3$ microcrystals, chemical behavior, Mössbauer study, 132, 284

 $\alpha\text{-Fe}_2O_3$ doped with, hydrothermally prepared, structural characterization, 130, 272

 $LiSn_2(PO_4)_3$, low-temperature triclinic distortion in, letter to editor, 130, 322

Mn-Sn system, NiAs-Ni₂In-related structures in, 129, 231

NH₂CH=NH₂SnI₃ cubic perovskite and related systems, synthesis, resistivity, and thermal properties, **134**, 376

 $[NH_4]^+[(Sn_3O)_2(PO_4)_3]^-$, synthesis and structure, **134**, 207

Pb₂(Sn_{1.5}W_{0.5})O_{6.5} defect pyrochlores, surface segregation and oxygen vacancy ordering, **130**, 81

Ru-Sn systems, binary compounds in, heat capacity and heat content measurements. 133, 439

 An_2T_2 Sn (An = Pu,Am; T = Co,Ir,Ni,Pd,Pt,Rh), synthesis, crystal chemistry, and physical properties, **134**, 138

Ln₂Sn₂O₇ (Ln = Y,La,Pr,Nd,Sm-Lu) pyrochlores, structural and bonding trends, 130, 58

Sn(O₃PCH₂CH₃) layered phase, room-temperature synthesis and structural characterization, **132**, 438

Sn₂P₂S₆, synthesis at room temperature, 129, 157

Sr₂SnO₄, Pr⁴⁺ doped in, EPR spectra, **130**, 250

 $Zn_{2-x}Sn_{1-x}In_{2x}O_{4-\delta}$ spinel, transparent conducting properties, 134,

Zn₂SnO₄, spinel thin films, spray pyrolysis preparation and humidity sensing characteristics, **128**, 305

Zr₂Ni₂Sn, structure and properties, 128, 289

 $ZrSn_{0.4}Sb_{1.6}, \ and \ ZrSi_{0.7}Sb_{1.3}$ and $ZrGeSb, \ synthesis$ and structure, ${\bf 134,\ 388}$

Titanium

Ag₂TiO₃, synthesis and crystal structure, **134**, 17

aluminum titanate, high-temperature phase formation in sol-gel synthesis, FTIR study, 131, 181

BaTiO₃, thin film preparation using glycolate precursor, 131, 43

BaTiO₃-LaAlO₃ and BaTiO₃-LaAlO₃-LaTi_{3/4}O₃ systems, chemical reactions and dielectric properties, **129**, 223

CsTiSi2O6.5

crystal structure, neutron and X-ray diffraction study, 130, 97

EXAFS and XANES studies, 129, 206

Cs₂TiSi₆O₁₅, crystal structure, 131, 38

 $\alpha\text{-Fe}_2O_3$ doped with, hydrothermally prepared, structural characterization, $130,\,272$

higher order elastic constants and generalized Gruneisen parameters of elastic waves and low-temperature thermal expansion, **129**, 53

 $HLnTiO_4$ and $HLnTiO_4 \cdot xH_2O$ (Ln = La,Nd,Sm,Gd), structure and Raman spectra, 130, 110

 $(\text{LaMn}_{1-x}\text{Ti}_x)_{1-y}\text{O}_3$ ($x \le 0.05$), electrical transport in, 133, 466

 $\text{La}_{1-x}\text{Sm}_x\text{TiO}_3$ (0 $\leq x \leq$ 1), magnetic and structural studies, letter to editor, **133**, 583

La_{2-x}Sr_{2x}Cu_{1-x}Ti_xO₄, linear Cu-O-Ti electronic interaction in two dimensions, **128**, 169

Li_{0.5-3x}Nd_{0.5+x}TiO₃ perovskites, microstructural study, **128**, 97

Li₂O-TiO₂-Fe₂O₃ ordered spinels, cation distribution, **134**, 170

Li₅TiN₃, microwave synthesis, **130**, 266

 $\text{Li}_{0.74}\text{Ti}_3\text{O}_6$, intergrowth phase of rutile and ramsdellite structure, synthesis and characterization, **129**, 7

LiTi₂O₄, transformation from spinel to ramsdellite upon heating, 132, 382

 $Na_{0.875}Fe_{0.875}Ti_{1.125}O_4$, topotactic oxidation of quadruple-rutile-type chain structure, **130**, 184

 $NaLnTiO_4$ and $Na_2Ln_2Ti_3O_{10}$ (Ln = La,Nd,Sm,Gd), structure and Raman spectra, 130, 110

Na₄[(TiO)₄(SiO₄)₃]·6H₂O, rhombohedrally distorted titanosilicate pharmacosiderite, synthesis and crystal structure, **134**, 409

Na₂Ti₂Sb₂O layered tetragonal compound, phase transition and spin gap behavior in, **134**, 422

 $(NH_4)_2[(Ti_3O_2)(HPO_4)_2(PO_4)_2]$, synthesis and powder X-ray structure, 132, 213

Ni-6 mass% B-58.6 mass% Mo-10 mass% Ti, high-strength boride base hard materials, 133, 243

Pb₂(Ti_{1.5}W_{0.5})O_{6.5} defect pyrochlores, surface segregation and oxygen vacancy ordering, **130**, 81

 TeO_2 -BaO-TiO₂ glasses, structural and nonlinear optical characterizations, 132, 411

 TiB_2

nanocrystalline materials, hardness, elastic modulus, and electrical resistivity, **133**, 249

PVD coatings, structure and properties, 133, 117

in thin film technology, 133, 279

Ti-B-C system including sections TiC_y-TiB₂ and B₄C_y-TiB₂, **133**, 205 TiB₂-CrB₂-WB₂ supersaturated solid solutions, annealing, phase formation during, **133**, 25

 Ti_4TBi_2 (T = Cr,Mn,Fe,Co,Ni), preparation and properties, 133, 400 Ti_8Bi_9 , preparation and crystal structure, 134, 26

TiN

microwave synthesis, 130, 266

nanocrystalline materials, hardness, elastic modulus, and electrical resistivity, 133, 249

synthesis from ammonolysis of TiS₂, 134, 120

TiN/TiB₂ nanocrystalline materials, hardness, elastic modulus, and electrical resistivity, **133**, 249

TiO₂

anatase nanopowders, Ru complex sensitizers of, crystal structure, 132, 60

ultrafine particles, transformation from rutile to anatase at negatively charged colloid surfaces, letter to editor, 132, 447

[Ti₂O(PO₄)₂(H₂O)₂], synthesis and X-ray powder structures, 132, 213

 $[Ti_3(PO_4)_4(H_2O)_2]\cdot NH_3,$ synthesis and X-ray powder structures, 132, 213

TiS₂, ammonolysis: synthesis of TiN, 134, 120

 $Ti:WO_3$ thin films, translational disorder generated by oriented defects in Magneli phases, 131, 215

zirconolite-4M substituted with Nd, analysis and structure, 129, 346 Transition metals

compounds of edge-sharing square planar units MX_4 , square planar to rectangular distortion in, 128, 181

rare earth transition metal borides and their hydrides, low-temperature synthesis, 133, 145

 $ThCr_2Si_2$ -type compounds, LMTO band structure calculations, 130, 254 Transmission electron microscopy

reaction at interface of yttria-doped ceria and yttria-stabilized zirconia, 129, 74

Transport properties

 $Ag_{1.92}$ Te at 160°C, **130**, 140

LaMnO_{3+ δ}, **130**, 117

Triclinic distortion

in LiSn₂(PO₄)₃ at low temperature, letter to editor, 130, 322

1,3,5-Triethynylbenzene

preferential formation of $C \equiv C - H \cdots \pi(C \equiv C)$ interactions in solid state, 134, 203

Trirutile-type compounds

Cu²⁺ polyhedra in, geometry and electronic structure, 131, 263

1,1,1-Tris(hydroxymethyl)propane

and 2-amino-2-methyl-1,3-propanediol, orientationally disordered phases, crystallography and thermodynamics, 133, 536

Tungsten

Ba₂Cu_xZn_{1-x}WO₆ mixed crystals, cooperative Jahn-Teller effect in Raman spectra, 129, 117

 $Ba_5Ru_{1.6}W_{0.4}Cl_2O_9$, 10-layer perovskite-related oxyhalide, crystal structure, 132, 407

CrWN₂, chemical synthesis and crystal structure, 128, 185

Fe₄W₂N, with unique η-carbide structure, synthesis, **134**, 302

(Fe_{0.8}W_{0.2})WN₂, synthesis and characterization, **131**, 374

 $H_2WO_4 \cdot nH_2O$ surfaces, transformation of ultrafine rutile particles to anatase at, letter to editor, 132, 447

 $MIn(WO_4)_2$ (M = Li, Na, K, Cs), vibrational characteristics, 129, 287

LaNi_{1-x}W_xO₃ ($0 \le x \le 0.25$) perovskites, magnetic properties, 134, 274

Li(Mo,W)₂O₃(PO₄)₂, synthesis and intersecting tunnel structure, 128, 215

 $(Mo_xW_{1-x})AlB$, single crystal growth by metal Al solutions and crystal properties, 133, 36

MoWO₃(PO₄)₂, crystal structure, 128, 191

Na_{0.10}WO₃ bronze with distorted perovskite structure, X-ray and electron diffraction study, **133**, 479

Ni-6 mass% B-58.6 mass% Mo-10 mass% W, high-strength boride base hard materials, 133, 243

Pb_{0.26}WO₃ bronze, X-ray and electron diffraction study, 130, 176

 $Pb_2(M_{1.5}W_{0.5})O_{6.5}$ (M=Ti,Sn), defect pyrochlores, surface segregation and oxygen vacancy ordering, 130, 81

 $[PMo_{4.27}W_{7.73}O_{40}^{6-}][H_3N(CH_2)_6NH_3^{2+}]_3$, hydrothermal synthesis and structure, **129**, 257

Rb₂Mo₂WO₅(PO₄)₃, interconnected tunnel structure, 130, 48

 $Sb_{0.16}WO_3$ intergrowth tungsten bronze, X-ray diffraction and electron diffraction study, 134, 344

Sb-(W,V)-O system, Aurivillius-related phases in, structure and properties, 128, 30

Ta₂O₅-WO₃ system, incommensurate structures of *L*-Ta₂O₅-type phases in, **126**, 208; *erratum*, **129**, 368

TiB₂-CrB₂-WB₂ supersaturated solid solutions, annealing, phase formation during, 133, 25

Ti:WO₃ thin films, translational disorder generated by oriented defects in Magneli phases, 131, 215

 $Tl_{1-x}Sr_2Cu_{1-y}W_{x+y}O_{5-\delta}$, 1201-based cuprate, cation ordering in, **132**, 113

 $W_5As_{2.5}P_{1.5}$ with one-dimensional vertex-linked W_6 cluster, 131, 310

WO₃, single crystal diffraction studies and structure at high pressures, 132, 123

ε-WO₃, structure and ferroelectricity, 131, 9

 AW_2O_8 (A = Zr,Hf), negative thermal expansion at high temperature, symmetric stretching vibrations of two-coordinate oxygen bridges in, letter to editor, **129**, 160

AW₃O₁₂, negative thermal expansion, letter to editor, 133, 580

Tunnel structure

Ba₆Mn₂₄O₄₈, HREM study, **132**, 239

interconnected, Rb₂Mo₂WO₅(PO₄)₃, 130, 48

intersecting, Na₃(MoO)₂(PO₄)₃, 132, 249

K₂(VO)₂P₄O₁₃, 132, 41

Li(Mo,W)₂O₃(PO₄)₂, **128**, 215

NaCoPO₄, 129, 328

Two-dimensional conductors

TeMo₅O₁₆, synthesis and crystal structure, 129, 303

U

UGP, see Geometrical unit of polyhedra

Uranium

 $(Ba,Sr)_{1+y}UO_{3+x}$, perovskite-related phases, structure and thermodynamics, 131, 341

 $Ba_{1+y}UO_{3+x}$, perovskite-related phases, structure and thermodynamics, 131, 341

 $K_2U_4O_{12}$ and $K_2U_4O_{13}$, EMF and calorimetric measurements of thermodynamic properties, 132, 342

 UB_4 , polar and reticular microhardness anisotropy, 133, 296

UBe₁₃, heavy fermion superconductors, chemical bonding topology, 131, 394

U₃Ga₂Ge₃, nuclear and magnetic structure, neutron powder diffraction study, 131, 72

UGe, crystal structure and magnetic behavior, 129, 113

 $UXPO_4 \cdot 2H_2O$ (X = Cl,Br), structure determination from powder X-ray diffraction data, 132, 315

UPt₃, heavy fermion superconductors, chemical bonding topology, **131**,

U₂PtC₂, heavy fermion superconductors, chemical bonding topology, 131, 394

URu₂Si₂, heavy fermion superconductors, chemical bonding topology, 131, 394

Urea

inclusion compound with 1,10-decanedicarboxylic acid, temperaturedependent structural properties, 128, 273 ٧

Vacancy ordering

oxygen in $Pb_2(M_{1.5}W_{0.5})O_{6.5}$ (M = Ti,Sn) defect pyrochlores, 130, 81 role in electrical resistivity anomalies and superlattice modulations in $ACu_{7-x}S_4$ (A = Tl,K,Rb), 134, 5

Vacuum evaporation

magnesium phthalocyanine thin films prepared by, electrical and optical characterization, **128**, 27

Valence

copper in LaCuO_{3-y} ($0 \le y \le 0.5$), control by oxygen content adjustment, **130**, 213

mixed-valences state, effect on magnetic excitation spectrum of SmB₆-based compounds, **133**, 230

Valence degeneracy

in $La_{2-x}Sr_{2x}Cu_{1-x}M_xO_4$ (M = Ti,Mn,Fe,Ru), 128, 169

Valence stabilization

in tetrahedral oxo and hydroxo Cr(IV), Mn(V), and Fe(VI) clusters, theoretical study, 128, 1

Vanadium

 $Ag_{1.2}V_3O_8$, crystal structure: relationship to $Ag_2V_4O_{11-y}$ and interpretation of physical properties, **134**, 294

Ag₂VP₂O₈, structure and ionic conductivity, 130, 28

Ba₃(VO₄)₂, high-pressure behavior, 132, 156

 $Bi_{13}Mo_4VO_{34}E_{13}$, $[Bi_{12}O_{14}E_{12}]_n$ columns and lone pairs E in, 131, 236 Bi_2O_3 – MoO_3 – V_2O_5 system, synthesis, crystal structure, and chemistry, 131, 236

Bi–Ln–V–O anionic conductors with δ-Bi₂O₃ fluorite-type structure (Ln = Y,Sm,Eu,Gd,Tb,Dy,Er,Yb), **134**, 219

 CaV_2O_5 , crystal structure and spin gap state, letter to editor, 127, 359; addendum, 129, 367

Cs₂V₄O₁₁ with unusual V–O coordinations, crystal structure, **134**, 52 Cs[(VO)₂(OH)(O₃PCH₂CH₂PO₃)], two-dimensional solid with pillared layers, synthesis and structure, **132**, 144

 $H_xV_2Zr_2O_9\cdot H_2O$ (x=0.43), hydrothermal synthesis and characterization, 128, 313

 $K_2(VO)_2P_4O_{13}$, with tunnel structure, synthesis and properties, 132, 41 LiMnVO₄, ambient and high-pressure structures and Mn^{3+}/Mn^{2+} redox energy, 128, 267

 $Mn_{1-x-y}Ag_y\Phi V_{2-2x-y}Mo_{2x+y}O_6$, solid solutions, synthesis and study, 133, 545

NH₄VOPO₄ and (NH₄)₃V₂O₃(VO)(PO₄)₂(HPO₄), crystal structure, and analysis of hydrothermal vanadium phosphate systems at 473 K, **134**, 286

Ni-6 mass% B-58.6 mass% Mo-10 mass% V, high-strength boride base hard materials, 133, 243

PbFe_xV_{6-x}O₁₁ ($1 \le x \le 1.75$), *R*-type frustrated system, Fe substitution effects on structural, electric, and magnetic properties, **130**, 223

Rb₅VONb₁₄O₃₈, synthesis and crystal structure, 134, 10

 β -rhombohedral boron doped with

electronic structure, electron energy-loss spectroscopic study, **133**, 152 icosahedral solids, electronic properties, **133**, 160

Sb-(W,V)-O system, Aurivillius-related phases in, structure and properties, 128, 30

Sr₃(VO₄)₂, high-pressure behavior, **132**, 156

VB₂, Czochralski-grown single crystals, microhardness, 133, 113

VB₃₂, reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335

VC, metal-to-metal bonding in, **128**, 121

VN

metal-to-metal bonding in, 128, 121

microwave synthesis, 130, 266

synthesis from ammonolysis of VS₂, 134, 120

 V_2O_3 , metal-insulator transition in, acoustic emission during, **133**, 430 δ - $M_{0.25}V_2O_5 \cdot H_2O$ (M = Ca,Ni), crystal structure, **132**, 323

V₂O₅·nH₂O surfaces, transformation of ultrafine rutile particles to anatase at, letter to editor, **132**, 447

VS₂, ammonolysis: synthesis of VN, **134**, 120

 ZrV_2O_7 , structure from - 263 to 470°C, **132**, 355

 $\text{ZrV}_x\text{P}_{2-x}\text{O}_7$, negative thermal expansion at high temperature, symmetric stretching vibrations of two-coordinate oxygen bridges in, letter to editor, **129**, 160

Vanadium phosphates

NH₄/V/P/H₂O and K/V/P/N(C₂H₅)₃/H₂O hydrothermal systems, analysis at 473 K, and crystal structures of NH₄VOPO₄ and (NH₄)₃V₂O₃(VO)(PO₄)₂(HPO₄), **134**, 286

Van Hove singularity

in SrRh₂P₂, **130**, 254

Vibrational spectra

superionics Li₄SiO₄ and Li₄GeO₄, 134, 232

Vibrations

two-coordinate oxygen bridges in negative thermal expansion of $ZrV_xP_{2-x}O_7$ and AW_2O_8 (A=Zr,Hf) at high temperature, letter to editor. 129, 160

Vibronic degeneracy effects

in superconductivity, 129, 174

W

Water

Ag₂Ce(H₂O)(NO₃)₅, structure and thermal decomposition, temperature-dependent X-ray powder diffraction study, **132**, 361

Ba(CoPO₄)₂·H₂O, lamellar hydrated phosphate with two-dimensional array of Co-O-Co network, **131**, 387

 Me^+ Br· Me^{2+} Br₂·6H₂O (Me^+ = K,NH₄,Rb; Me^{2+} = Co,Ni), crystallization and structure, **129**, 200

 $CaHPO_4\cdot 2H_2O,$ protonic mobility in, IR spectroscopic and neutron scattering studies, 132, 6

 $Cd_3^{II}[(Fe^{III}/Co^{III})(CN)_6]_2 \cdot 14H_2O,$ X-ray diffraction and spectral studies, 129, 17

 $(CH_3NH_3)_2M(II)(SO_4)_2 \cdot 6H_2O$ (M(II) = Cu,Zn,Ni), IR and Raman spectra, **133**, 407

CoCl₂·6H₂O, solid-solid reactions with 4-methylbenzeneamine, 132, 291

CuCl₂·2H₂O, solid-solid reactions with 4-methylbenzeneamine, **132**, 291

Cu_xMn_{1-x}(HCOO)₂·2H₂O mixed crystals, thermal decomposition to copper-manganese oxides, **133**, 416

CuNbOF₅·4H₂O, infrared spectroscopy, **133**, 576

Cu₂(OH)₃(CH₃COO)· H₂O, preparation, characterization, and *ab initio* X-ray powder diffraction, **131**, 252

[Fe₃(PO₄)₃F₂, (CH₃NH₃)₂, H₂O], hydrothermal synthesis, crystal structure, and magnetic properties, **134**, 349

 M_3 Fe₂(SeO₃)₆·2H₂O (M = Mg,Co,Ni), synthesis, crystal structure, and IR and Mössbauer spectroscopy, **131**, 54

(H₃O)Yb₃F₁₀⋅H₂O, chimie douce synthesis and ab initio structure determination, **128**, 42

 $HLnTiO_4 \cdot xH_2O$ (Ln = La,Nd,Sm,Gd), structure and Raman spectra, 130, 110

 $H_xV_2Zr_2O_9 \cdot H_2O$ (x=0.43), hydrothermal synthesis and characterization, **128**, 313

 $H_2WO_4 \cdot nH_2O$ surfaces, transformation of ultrafine rutile particles to anatase at, letter to editor, 132, 447

hydrothermal $NH_4/V/P/H_2O$ and $K/V/P/N(C_2H_5)_3/H_2O$ systems, analysis at 473 K, and crystal structures of NH_4VOPO_4 and $(NH_4)_3V_2O_3(VO)(PO_4)_2(HPO_4)$, 134, 286

 $KAl(HPO_4)_2 \cdot H_2O$, X-ray diffraction, neutron scattering, and solid-state NMR, 132, 47

 $K[Fe_2(PO_4)_2(OH)(H_2O)] \cdot H_2O$, hydrogen bonding and structural relationships, 133, 508

 $K_{0.23}(H_2O)_{0.27}MoO_{3.00}$, $K_{0.23}(H_2O)_{0.43}MoO_{3.00}$, and $K_{0.23}(H_2O)_{0.65}$ MoO_{3.00} bronzes, preparation and thermal decomposition, **132**, 330

KNa(C₄H₄O₆)·4H₂O, structure, **131**, 350

[Mg $_{0.174}$ Ga $_{0.256}$ (OH) $_2$](CO $_3$) $_{0.134}\cdot$ mH $_2$ O, synthesis, characterization, and 1 H and 71 Ga MAS NMR, 131, 78

Na₂Cu(SO₄)₂·2H₂O, IR and Raman spectra, 133, 407

NaH₂PO₄·2H₂O, high microwave susceptibility: synthesis of crystalline and glassy phosphates with NASICON-type chemistry, **132**, 349

Na₄[(TiO)₄(SiO₄)₃]·6H₂O, rhombohedrally distorted titanosilicate pharmacosiderite, synthesis and crystal structure, **134**, 409

NiCl₂·6H₂O, solid-solid reactions with 4-methylbenzeneamine, 132, 291

(3PbO·PbSO₄·H₂O), crystal structure, **132**, 173

(Pr/La)Co(CN)₆⋅5H₂O, mixed cationic systems, synthesis and crystal structure, **129**, 12

 $RbZn_2(HPO_4)_2(H_2PO_4) \cdot 2H_2O$ and $RbZn(HPO_4)(H_2PO_4) \cdot H_2O$, syntheses and crystal structures, **134**, 148

[Ti₂O(PO₄)₂(H₂O)₂], synthesis and X-ray powder structures, **132**, 213 [Ti₃(PO₄)₄(H₂O)₂]·NH₃, synthesis and X-ray powder structures, **132**, 213

 $UXPO_4 \cdot 2H_2O$ (X = Cl,Br), structure determination from powder X-ray diffraction data, 132, 315

 δ - $M_{0.25}$ V₂O₅·H₂O (M = Ca,Ni), crystal structure, 132, 323

V₂O₅·nH₂O surfaces, transformation of ultrafine rutile particles to anatase at, letter to editor, 132, 447

α-Zr(HPO₄)₂·H₂O large crystals, thermoanalytical study, phase transitions, and dimensional changes, **132**, 17

 $\beta\text{-}Zr(OH)_2(NO_3)_2\cdot H_2O,$ structural analysis by X-ray powder diffraction, **128**, 295

 $\alpha\text{-}Zr(OH)_2(NO_3)_2\cdot 1.65H_2O,$ structural analysis by X-ray powder diffraction, 128, 295

Х

XANES, see X-ray absorption near edge structure

X-ray absorption near edge structure

CsTiSi₂O_{6.5}, **129**, 206

LiMn₂O₄

in situ study of charge–discharge process, letter to editor, **133**, 586 spinel-type, letter to editor, **128**, 326

X-ray diffraction

CsTiSi₂O_{6.5}, single-crystal XRD, 130, 97

decomposition processes in single crystals of K₂NiF₄-type aluminate LaCaAlO₄, 134, 132

KAl(HPO₄)₂·H₂O, single-crystal studies, 132, 47

LiMn₂O₄ and Li₂MnO₃ coexisting phases, stoichiometry, 128, 80

Na_{0.10}WO₃ bronze with distorted perovskite structure, **133**, 479

(3PbO·PbSO₄·H₂O), single-crystal studies, 132, 173

 $Sb_{0.16}WO_3$ intergrowth tungsten bronze, single-crystal studies, **134**, 344 (Sr,Ca)₄Cu₆O₁₀ three-leg-ladder compound, single-crystal studies, **134**, 427

 WO_3 at high pressures, single-crystal studies, 132, 123 $YFe_2D_{3.5},$ 133, 568

X-ray photoelectron spectroscopy

state of boron atoms in amorphous metallic matrix, 133, 273

XPS-XAES of $Cu_2(OH)_3(CH_3COO) \cdot H_2O$, 131, 252

X-ray scattering

wide-angle, nonstoichiometric NiMn₂ $\square_{3\delta/4}$ O_{4+ δ} spinels, **129**, 271

Υ

Young's modulus

B₄C–C injection molded ceramics, **133**, 68 nanocrystalline borides and related compounds, **133**, 249

Ytterbium

Al₅Yb₃O₁₂, cations arrays in garnet-type compounds, 128, 69

Bi-Yb-V-O anionic conductors with δ -Bi₂O₃ fluorite-type structure, 134, 219

 $(Gd-Yb)_4Mo_{18}O_{32}$, with Mo_n (n=2,4,6) cluster chains, anomalous metal-insulator transitions in, **134**, 45

 $Hg_2Ba_2ErYb_2O_{8-\delta},$ synthesis and structural and magnetic characterization, 132, 163

(H₃O)Yb₃F₁₀⋅H₂O, chimie douce synthesis and ab initio structure determination, **128**, 42

Rb₄YbI₆, synthesis and crystal structure, 128, 66

YbB₆, polar and reticular microhardness anisotropy, 133, 296

YbCuBaO₅, Gibbs free energy of formation, determination by EMF method, **134**, 85

YbOOH, cation arrays, 131, 358

YbRh₃B₂, single crystal growth from molten copper flux, 133, 82

 $Yb_{6+x/3}Si_{11}N_{20+x}O_{1-x}$, preparation and crystal structure, 129, 312

Yb₂Sn₂O₇, structural and bonding trends, 130, 58

YbTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277

Yttrium

AlSr₂YCu₂O₇, structural order/disorder in, 133, 434

Ba₂(YSb)O₆, ordered perovskites suitable as substrates for superconducting films, characterization, **128**, 247

 $Bi_2Sn_2O_7$ doped with, bonding and structural variations in, 131, 317 Bi-Y-V-O anionic conductors with $\delta-Bi_2O_3$ fluorite-type structure, 134, 219

LiYF₄, Am³⁺ in, spectroscopic studies and crystal-field analysis, **129**, 189

 $Y_3X_2Al_3O_{12}$ garnets (X = Al and (Al,Cr)), electron density study, 134,

 YB_6

electronic structure calculations, 133, 51

incongruently melting, single crystal growth and properties, **133**, 198 in thin film technology, **133**, 279

 YB_{25} , powder X-ray diffraction and electron diffraction studies, 133, 122 YB_{56} and YB_{62} with YB_{66} -type structure, structural refinement, 133, 16 YB_{66}

(100) surface structure and chemistry, 133, 31

interband critical transition points, 133, 132

modulated photoconductivity, 133, 195

reflectivity spectra, description based on superposition of Drude type and hopping type transport, **133**, 335

YBa₂Cu₃O_v

electrochemical doping with *M-β*"-Al₂O₃ ionic conductors, **128**, 93 single crystal, structure and electron density, effects of oxygen introduction, **130**, 42

YBa₂Cu₃O_{6+x}, orthorhombic, dependence of lattice parameters on oxygen content, **134**, 356

 $YBa_2Cu_3O_{7-\delta}$, substrates $Ba_{2-x}Sr_xDyTaO_6$ (x=0,1,2) for, development and dielectric properties, **133**, 522

 $(YBa_2Cu_3O_{7-0.25})_4$, superconductive mechanism, 129, 174

YBO₃, structure, **128**, 261

 $Y_{17.33}(BO_3)_4(B_2O_5)_2O_{16}$, structure and luminescence, 134, 158

YB₄₁Si_{1.2}, crystal structure, 133, 11

YB₄₄Si_{1.0}, single crystal growth, 133, 55

Y₄C₅, crystal structure, **132**, 294

YCoO₃, structure from neutron diffraction, 130, 192

YFe₂D_{3.5}, X-ray and neutron powder diffraction studies, 133, 568

YMnO₃, with metastable perovskite-type structure, synthesis, **129**, 334 Y₄Mo₁₈O₃₂, with Mo_n (n = 2,4,6) cluster chains, anomalous metal–insulator transitions in, **134**, 45

(YO_{1.5})_{0.2}(CeO₂)_{0.8}, reaction at interface with yttria-stabilized zirconia, TEM study, 129, 74 YOOH, cation arrays, 131, 358

(Y₂O₃)_{0.08}(ZrO₂)_{0.92}, reaction at interface with yttria-doped ceria, TEM study, **129**, 74

Y-Pd-B-C system, chemical and physical properties, 133, 169

YRh₂B₂C, synthesis and characterization, **133**, 77

 $Y_{6+x/3}Si_{11}N_{20+x}O_{1-x}$, preparation and crystal structure, **129**, 312 $Y_2Sn_2O_7$, structural and bonding trends, **130**, 58

YTh₂F₁₁, metastable series with cationic and anionic disorder, synthesis and characterization, **130**, 277

Z

Zinc

Ba₂Cu_xZn_{1-x}WO₆ mixed crystals, cooperative Jahn-Teller effect in Raman spectra, **129**, 117

Ba₂FeZnF₇Cl, Mössbauer spectroscopy, 131, 198

 $(CH_3NH_3)_2Zn(II)(SO_4)_2\cdot 6H_2O,\ IR$ and Raman spectra, 133, 407

 K_2ZnGeO_4 , α and β forms, crystal structures, 134, 59

 $N(CH_3)_4 \cdot Zn(H_2PO_4)_3$, molecular cluster, synthesis and crystal structure, 131, 363

N(CH₃)₄· Zn(HPO₄)(H₂PO₄), open framework phase built up from lowdensity 12-ring topology, synthesis and crystal structure, **131**, 363

[NH₃(CH₂)₄NH₃]²⁺[Zn₂P₃O₉(OH)₃]²⁻ with alternating inorganicorganic layers, synthesis and characterization, **132**, 229

RbZn₂(HPO₄)₂(H₂PO₄) · 2H₂O and RbZn(HPO₄)(H₂PO₄) · H₂O, syntheses and crystal structures, **134**, 148

Sr₂Cu₂ZnO₂S₂, synthesis and properties, 130, 319

zinc blende crystals, atomic sizes in, linear electro-optic coefficient dependence on, 130, 54

 Zn^{2+} , electrochemical doping of oxide ceramics with Zn- β'' - Al_2O_3 ionic conductors, **128**, 93

Zn(CN)₂, disordered crystal structure, 134, 164

[Zn-Cr-SO₄] lamellar double hydroxides, selective synthesis, **130**, 66 Zn(Mg)_{1-x}Cu_xSb₂O₆, trirutile-type compounds, Cu²⁺ polyhedra in, geometry and electronic structure, **131**, 263

ZnO, thin films, modification by Ni, Cu, and Cd doping, **128**, 176 Zn₃O₂, crystal structure, **132**, 56

 $Zn_{2-x}Sn_{1-x}In_{2x}O_{4-\delta}$ spinel, transparent conducting properties, 134, 192

Zn₂SnO₄, spinel thin films, spray pyrolysis preparation and humidity sensing characteristics, 128, 305 Zintl phases

tetrahedral cluster packing and other three-connected nets in, 133, 501

Ca-Zr-O-N system, oxynitride synthesis in ZrO₂-rich part and characterization. 128, 282

CrZr_{0.75}Nb_{0.25}F₆, antiferrodistortive order in solid solution, 131, 231

 $H_xV_2Zr_2O_9 \cdot H_2O$ (x = 0.43), hydrothermal synthesis and characterization, **128**, 313

Mg–Zr–O–N system, oxynitride synthesis in ZrO_2 -rich part and characterization, 128, 282

Ni-6 mass% B-58.6 mass% Mo-10 mass% Zr, high-strength boride base hard materials, 133, 243

 $Sr_{1-x}Ba_xZrSe_3$ series, structural evolutions in, 130, 20

(Y₂O_{3)0.08}(ZrO₂)_{0.92}, reaction at interface with yttria-doped ceria, TEM study, **129**, 74

zirconolite-4M substituted with Nd, analysis and structure, 129, 346

ZrB₂, in thin film technology, 133, 279

ZrB₁₂, in thin film technology, **133**, 279

Zr₂CoP, structure and characterization, 131, 379

ZrGeSb, ZrSi_{0.7}Sb_{1.3}, and ZrSn_{0.4}Sb_{1.6}: family containing ZrSiS-type and β -ZrSb₂-type compounds, **134**, 388

α-Zr(HPO₄)₂·H₂O large crystals, thermoanalytical study, phase transitions, and dimensional changes, 132, 17

Zr₂Ni₂In, structure and properties, 128, 289

Zr₂NiP, structure and characterization, 131, 379

Zr₂Ni₂Sn, structure and properties, 128, 289

ZrO₂, structure, relationship to structure of Ca(OD)₂ II prepared at high pressure, powder neutron diffraction study, **132**, 267

β-Zr(OH)₂(NO₃)₂·H₂O, structural analysis by X-ray powder diffraction, 128, 295

 $\alpha\text{-}Zr(OH)_2(NO_3)_2\cdot 1.65H_2O,$ structural analysis by X-ray powder diffraction, 128, 295

ZrSiO₄, iron-doped pigments, synthesis by pyrolysis of aerosols, **128**, 102 ZrSi_{0.7}Sb_{1.3}, ZrSn_{0.4}Sb_{1.6}, and ZrGeSb: family containing ZrSiS-type and β -ZrSb₂-type compounds, **134**, 388

 ZrV_2O_7 , structure from - 263 to 470°C, **132**, 355

 $ZrV_xP_{2-x}O_7$ and ZrW_2O_8 , negative thermal expansion at high temperature, symmetric stretching vibrations of two-coordinate oxygen bridges in, letter to editor, **129**, 160

Zirconolite-4M

Nd-substituted, analysis and structure, 129, 346